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ABSTRACT OF THE THESIS

Evaluation of a Low Reynolds Number Correction to the

k- e Two Equation Compressible Turbulence Model

by Robert J. Becht, M.S.

Thesis Director: Dr. Doyle D. Knight

The objective of the current research is the development of an improved k - e two-

equation compressible turbulence model for turbulent boundary layer flows experiencing

strong viscous-inviscid interactions. The development of an improved model is impor-

tant in the design of hypersonic vehicles such as the National Aerospace Plane (NASP)

and the High Speed Civil Transport (HSCT).

Improvements have been made to the low Reynolds number functions in the eddy

viscosity and dissipation of solenoidal dissipation of the k - • turbulence model. These

corrections offer easily applicable modifications that may be utilized for more com-

plex geometries. The low Reynolds number corrections are functions of the turbulent

Reynolds number and are therefore independent of the coordinate system. The pro-

posed model offers advantages over some current models which are based upon the

physical distance from the wall, modify the constants of the standard model or make

more corrections than are necessary to the governing equations.

The code has been developed to solve the Favre averaged, boundary layer equations

for mass, momentum, energy, turbulence kinetic energy, and dissipation of solenoidal

dissipation using Keller's box scheme and the Newton spatial marching method. The

code has been validated by removing the turbulent terms and comparing the solution

ii



with the Blasius solution; and by comparing the turbulent solution with an existing

k - _ model code using wall function boundary conditions. Excellent agreement is seen

between the computed solution and the Blasius solution, and between the two codes.

The model has been tested for both subsonic and supersonic flat-plate turbulent

boundary layer flow by comparing the computed skin friction with the Van Driest

II theory, and the experimental data of Weighardt; by comparing the transformed

velocity profile with the data of Weighardt, and the Law of the Wall and the Law of

the Wake; and by comparing the computed results of an adverse pressure gradient with

the experimental data of Fernando and Smits. Good agreement is obtained with the

experimental correlations for all flow conditions.
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Chapter 1

INTRODUCTION

1.1 Motivation

The standard equations governing fluid motion are the conservation of mass, conserva-

tion of momentum and conservation of energy. However, it is widely known that there

exist only a few conditions under which these equations may be analytically solved. The

majority of other fluid flow cases need to either be determined experimentally or solved

computationally. The advent of supersonic aircraft and the corresponding expense of

wind tunnel testing has made computational fluid dynamics the desirable first step in

design, and in the case of high hypersonic aircraft often the only viable option.

There are hmitations associated with the computational methods of solving the

equations of motion. These manifest themselves as limitations on computer resources

and the physics of the fluid flow problem. Limitations on computer resources include

computer memory and execution time. The advent of larger and faster computers,

such as the Cray C-90 and massively parallel machines, has increased the domain of

computational effectiveness, but has yet to encompass the entire spectrum of fluid flow

problems. These include typical fluid flow problems dealing with aircraft design. The

majority of aircraft flow design problems deal with motion that is turbulent in nature.

Turbulent flow problems have historically proven the most demanding and difficult to

solve and until recently solutions were almost entirely dependent upon experimental

correlations.

The complex nature of turbulent flow, due its chaotic behavior and the multitude

of scales and frequencies present, has made its analytical solution impossible and its

computational solution extremely difficult. Because of the limitations associated with

current computers it requires more than simply discretizing the quations of motion to



computationaUysolve these problems. An attempt to numerically solve the equations

of motion, for the range of practical problems, in an exact sense for all frequencies and

length scales inherent in the problem requires more computer resource than are available

with current supercomputers. To solve this problem the equations of motion are not

solved exactly, but are solved in an average sense, with assumptions being made about

certain length scales. This averaging is termed Reynolds averaging. By averaging the

Navier Stokes equations a closure problem results with the formation of the Reynolds

stress tensor. In 1972 Jones and Launder proposed the k - • two equation closure

model [20], [21] for the Reynolds stress based upon the eddy viscosity introduced in the

Boussinesq approximation [42]. This model relates the turbulence length scales to the

turbulence kinetic energy and the dissipation of turbulence kinetic energy. It must be

emphasized that Jones' and Launder's solution to the Reynolds averaged Navier Stokes

equations is only a model and is not exact.

Since its inception there have been numerous changes to Jones' and Launder's orig-

inal model [5], [9], [13], [15], [33], [34], [38], [40], [47], [49], [55] and [57]. These have

primarily taken the form of modifications to the low Reynolds number correction and

boundary conditions needed to accurately predict the fluid flow in the viscous sublayer

of wall bounded flows. Typically these models have incorporated complicated damping

functions for modifying the eddy viscosity, the production of solenoidal dissipation and

the dissipation of solenoidal dissipation; have made these corrections dependent upon

the physical distance from the wall; and have employed ad hoc boundary conditions at

the wall for the solenoidal dissipation. The current research attempts to undertake a

more fundamental examination of the low Reynolds number modifications that need to

be employed when integrating through the viscous sublayer.

1.2 k - e Two Equation Turbulence Modeling

Algebraic, one equation and two equation turbulence models usually utilize the Boussi-

nesq approximation in modeling the Reynolds stress. In analogy to the molecular theory

of gases the Reynolds stress is modeled by a mixing coefficient times the gradient of the

velocity [42]. This mixing coefficient is termed the eddy viscosity. In 1925 Prandtl took



the Boussinesqapproximationonestep further when he postulated his mixing length

theory [51].

Assuming two dimensional, shear flow and a Newtonian fluid the molecular shear

stress may be approximated by a known coefficient, _u, times the derivative of the

velocity

r_olec du (1.1)
- _dy

where the molecular viscosity is defined by

# = lpvthlmlp (1.2)

Vth is the average molecular velocity and lrnlp is the mean free path of the molecules.

Using this analogy the Boussinesq approximation says that

Tt'_"b = #T _yy (1.3)

where _ is the mean velocity and the eddy viscosity is defined by

_T = C1 Vrnix lmix (1.4)

In Prandtl's mixing length theory vmi_ and lmi_ replace Vth and ImSp respectively in

the molecular theory of gases [54]. vmi_ is the characteristic velocity of the turbulence

and Imi_ is the characteristic length scale of the turbulence. However, unlike Vth and

lm]p which are properties of the fluid, vmi_ and 1,niz are properties of the flow and are

not known a priori, vmi_ and lmi_ typically vary greatly within the flow field. Using a

momentum transport analysis Prandtl further hypothesized that vmi_ is a function of

the mixing length and the gradient of the mean velocity

dfi

vm, = tm, (1.5)

Utilizing this approximation it is sufficient to close the system of governing equations

if lmi_ can be specified. Algebraic models specify Imi_ as a function of the type of flow

begin examined. For wake flow and wall bounded flows Imi_ will be different. This

limits the applicability of algebraic models, especially for three dimensional, complex

flows in which more than one type of flow is encountered.



Unlike algebraic turbulence models, two equation turbulence models are developed

such that they are independent of the flow geometry being examined. This has the

advantage of being applicable over a wider range of geometrical configurations. The

k - e model works by specifying vmi_ and lmi_. The characteristic velocity scale of the

turbulence is based on the assumption that it is related to the turbulent kinetic energy,

k,

k = 1-(u'2 + v '2 + w '2) (1.6)
2"

where ' denotes the turbulent fluctuations from the mean and-denotes Reynolds aver-

aging. The mixing velocity is taken to be equal to V_. This leaves the mixing length

to be specified. It is necessary to formulate the mixing length based upon the physics

of the flow. To do this the mixing length is related to the turbulence kinetic energy

and the rate of dissipation of turbulence kinetic energy. Purely on dimensional grounds

this yields

lmi ~ -- (1.7)

where e is the rate of dissipation of turbulence kinetic energy. Therefore in the standard

k - e model the eddy viscosity is specified by

DT -- pC'k2 (1.8)
e

and the system is closed, provided equations are known for k and e. The model proposed

by Jones and Launder [20], [21] provides approximate equations for k and • such that

the system is closed. These equations and the closure coefficients proposed by Launder

and Spalding [35] make up the standard k - e turbulence model.

1.3 Present Research

The ability of the standard k - e turbulence model to handle all types of fluid flow

problems is hmited. The standard model cannot be integrated fully to the surface,

requiring the use of wall function boundary conditions which are not universally appli-

cable (See Chapter 2). To extend the k - e model to the surface, modifications need

to be made to the governing equations through damping functions that only become



importantin regions near a solid surface. These modifications are termed low Reynolds

number corrections.

The objective of the current research is the development of a low Reynolds correc-

tion that is as simple as possible and which may easily be applied to more complicated,

three dimensional flows. To keep the model simple the fewest number of modifications

are made to the governing equations. Speziale et al have shown that it is sufficient to

modify only the eddy viscosity and the dissipation of solenoidal dissipation terms in the

governing equations [47]. For this reason, the current model only modifies these terms.

For applicability to more complex geometries, it is necessary that the corrections be

independent of the coordinate system. Many models utilize the physical distance from

the wall and the wall friction velocity in defining the low Reynolds number modifica-

tion. Such models may have problems; for example, in the vicinity of a corner where

the distance from the wall may be defined by two independent surfaces; or in a two

dimensional flow where the friction velocity is zero at separation. The current model

assumes the low Reynolds number modifications are functions of the turbulent Reynolds

number, Rt = pk2/#e, thereby avoiding the problems associated with employing the

physical distance from the wall and the friction velocity. Many models also utilize ad

hoc boundary conditions for the dissipation rate or introduce a pseudo-dissipation rate

for numerical reasons. It is found that this is not necessary and the physical boundary

condition for the dissipation may be employed.

In summary, the current model avoids many of the limitations of previous mod-

els in that it makes as few modifications to the governing equations as are required,

makes these corrections functions of the flow properties, and properly implements the

boundary condition for the dissipation.



Chapter 2

GOVERNING EQUATIONS

2.1 Equations Governing Mass, Momentum and Energy

The instantaneous equations governing fluid motion in Einstein notation are given as:

• Conservation of Mass (Continuity)

0p 0(p_) _ 0 (2.1)
0--7+ Ozk

• Conservation of Momentum

o(p._____A)+ o(pu,_) _ op + o(r_______i) (2.2)
Ot Ozk Ozi Ozk

* Conservation of Energy

0(pe) + = --- (2.3)
0---_ Ozk Ozk + Ozk

where the equations are written in dimensional form.

However, as already stated, it is currently impossible to solve these equations nu-

merically for most turbulent flow applications. Therefore these equations are not solved

instantaneously, but axe solved in an average sense utilizing Favre and Reynolds av-

eraging. This is accomplished by introducing mass averaged and ensemble averaged

variables in place of the instantaneous variables and then averaging the equations of

motion. The ensemble average is defined as:

f = lim -1_._ fi (2.4)
n---*o¢_ n /=i

and the mass average is defined as the density weighted ensemble average:

] : - lim - _'(pf_) (2.5)
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The fl are the individual realizations of the variable f(zi, t). The dependent variables

may now be written as the sum of an average part and a fluctuating part. For mass

averaging this is written as:

f =]+f"

and for ensemble averaging it is written as:

f= ]+f'

where " and

(2.6)

(2.T)

represent the fluctuating variables in the mass-averaged and unweighted

expansions respectively.

If the sum of the average and fluctuating parts of the instantaneous variables are

substituted into equations 2.1 - 2.3 and the equations are averaged, the resulting sys-

tem are the Reynolds mass averaged conservation equations of mass, momentum, and

energy:

• Reynolds Averaged Conservation of Mass

0: 0(pak) _ 0 (2.8)
0--t+ 0zk

• Reynolds Averaged Conservation of Momentum

O(fifik) O(:fiifik) Off Ok(-pu_'u_ +eik) (2.9)
0---_ + Oz_ - Ozl + Ozk

• Reynolds Averaged Conservation of Energy

0(#_) + 0[fik(/3_ +/_)] O(C_,_T"u" - O,k)__ = _ vr k +
Ot Ozk Ozk

0 ( _-::7_.,.. 1 ,,,, ,, . _ , .)Ozk -pujukuj - 2 pujujuk + ujrjk + ujrjk
(2.1o)

In equations 2.8 - 2.10,/3 is the mean density, fik is the mass-averaged velocity, 15 is the

mean pressure, and _ is the mass-averaged total energy per unit mass given by:

.

(2.11)

where Cv is the specific heat at constant volume and/e is the mass-averaged turbulent

kinetic energy defined by:

1 ,1 it
:k= -_pukuk (2.12)



In order to close the system of equations defined by 2.8-2.10 it is necessary to

specify expressions for the mass-averaged Reynolds stress, " "pu i uk, and the molecular

viscous stress, rlk, in the Reynolds averaged conservation of momentum equation 2.9;

and expressions for the molecular heat flux, Ok, the turbulent heat flux, C -T"u" the
PP k'

triple velocity-density correlation, 1 __ ._ ,,_._p'aj'ttj'uk, and the velocity-molecular shear stress

correlation, u"-j,jk, in the mean energy equation 2.10.

The molecular viscous stress, rlk, is approximated by assuming a Newtonian fluid

0ilk 0ill. 2.0fij 8
eik =/_(-_zi + _)- _t_ ik (2.13)

where /2 = /2(T) is the molecular dynamic viscosity as function of the mass-averaged

temperature, approximated by Sutherlands law [4]

3

tt_ - T + T.e!

T.ey is the reference temperature given for air as 198.6°R.

The molecular heat flux, Qk, is approximated by assuming the Fourier heat law

Pr 0zk (2.15)

where Pr is the molecular Prandtl number and Cp is the specific heat at constant

pressure.

2.2 Standard k- e Model

Expressions need to be found for the remaining terms in equations 2.9 and 2.10. This

is the classical problem of closure associated with solving turbulent flow problems. The

current research utilizes the k - e two equation turbulence model to close the equations

of motion. The k - e model is calibrated not only for wall bounded flows, but also for

free shear flows. In order to assure acceptable agreement in those regions where the

low Reynolds number modification is not required, it is necessary to utilize those model

constants which have been shown and accepted to accurately predict this type of flow

behavior. For this reason the standard k - e model coefficients as given by Launder and

Spalding [35] are used.



The standard k - e model and nearly all two equation models utilize the Boussinesq

approximation to approximate the Reynolds stress. In analogy to the kinetic theory of

gases the Reynolds stress is approximated by an eddy viscosity that is dependent upon

the characteristic lengths of the turbulence. An approximation to the Reynolds stress

,0ilk 0fii 2 0fij 2#_61 k

is therefore given as:

(2.16)

where _i1¢is the kronecker delta function and _T is the eddy viscosity defined for the

k - e model as

k2
#r : (2.1T)

E

C, is a closure coefficient and _ is the rate of dissipation of turbulent kinetic energy

defined as

_ - r,k -_u_' (2.18)
u;g k

In analogy to the molecular transport of heat the turbulent heat flux, -Cpr,_TllU/Ik, is

modeled according to

C-T"u" Cp#r OT (2.19)
pr k- PrT

where PrT is the turbulent Prandtl number.

The triple velocity-density correlation, 1 _ ,,_ ,_,_puj uj uk, appearing in the energy equation

2.10 is small compared to " "" •puj uku _ and maybe ignored [25]. The velocity-molecular shear

correlation, u_rjk, appearing in equation 2.10 is also small and may also be ignored [25].

These approximations may be carried into the supersonic range, but lose their validity

if they are carried into the hypersonic range [54].

The introduction of the eddy viscosity into the equations of motion has added two

more unknowns to the system, k and _. This necessitates including two more equations

of motion. The first is the equation for the transport of turbulence kinetic energy,

equation 2.20, and the second is the equation for the transport of solenoidal dissipation,

equation 2.24. Utilizing the standard k - e model approximations these equations are
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• Transport of Turbulence Kinetic Energy

O_k O_kak
-- .Jr_

Ot Ozk

+

puj u k

o [ _,r o(_k)

pe (2.20)

where the production of turbulent kinetic energy is defined by;

. . O_j
Pk - -pus uk-_;_ (2.21)

the dissipation of turbulent kinetic energy is defined by;

Dk -- -_+ (2.22)

and the diffusion of turbulent kinetic energy is defined by

. 0k ] (2.23)0 _r 0(_k) + _'0-_Dik = Ozk _k Ozk

• Transport of Solenoidal Dissipation

where the production of dissipation is defined by;

P,o = -c,_ _-p-ju_b-- k

the dissipation of dissipation is defined by;

(2.25)

D_, = -C_./_ (2.26)

and the diffusion of dissipation is defined by;

Di+, : O_k -_ + _ O_.kJ

In the above equations ak, a_, C+t, and C+2 are closure coefficients found by correlating

with results from different flows [54].
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The transport of solenoidal dissipation is not necessarily equivalent to the transport

of dissipation. The total dissipation, _, is comprised of two parts; (1) the solenoidal

dissipation, _., and (2) the dilatational dissipation, _d, such that

: _o + _d (2.28)

The solenoidal dissipation is that part of the dissipation that is associated with vorticity

fluctuations

_e', = 2_p(w_') 2 (2.29)

and the dilatational dissipation is the part of the dissipation that for high Reynolds

number, inhomogenous turbulence may be approximated by the divergence of the fluc-

tuating velocity

4 (Ou}'_ 2
Ped = _PP k 0zi / (2.30)

which is only present in compressible flows [54].

To account for the dilatational dissipation, corrections have been proposed by Sarkar

et al [41] and Zeman [56]. These corrections postulate that the dilatational dissipation

may be modeled as a function of the solenoidal dissipation and the turbulent Mach

number:

_d = CkF(_,, Mr) (2.31)

where

f2 k (2.32)
=

The corrections proposed by Sarkar and Zeman were firstcalibrated for compressible

mixing layers and their application to compressible wall bounded flows is suspect as

shown by Huang et al [17]. It was found by Huang et al that the baseline k - e

model behaves better in predicting the compressible Law of the Wall than models which

incorporate the corrections of Sarkar or Zeman. For this reason they are not tested,

although the code has been constructed with the Sarkar formulation built in. This

formulation assumes the total dissipationto be a function of the solenoidal dissipation

and turbulent Mach number as seen in equation 2.33.

e: ev (1 + CkM 2) (2.33)
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All cases currently run assume Ck = 0 making _ = _,. For the cases examined the

maximum of the turbulence Mach number is .09. This corresponds to the dilatational

dissipation being less than 9% of the solenoidal dissipation everywhere.

To close the system of equations an equation of state needs to be specified. This

equation is the ideal gas law

= #RT (2.34)

where R is the gas constant given for air as 1716 ft2/(s2°R).

2.3 Boundary Layer Approximations

The model proposed is validated and tested for steady flow over a flat plate at vary-

ing Mach numbers and pressure gradients. Because of the geometry of the flow high

Reynolds number boundary layer approximations are made to the governing equations

2.8 - 2.24, yielding equations 2.35 - 2.43.

• Continuity

0-7 + 0y - o (2.35)

• x-Momentum

0fi 0_t @
P_o-_z + P_0y - 0_ +

_ 0fi
O [(pT + p)_y] (2.36)

where the eddy viscosity is

_C,k 2
PT --

and the pressure gradient is

Op dUe
-- = --Peffe--
Oz dz

(2.37)

(2.3s)

• Mean Energy

a--;

[-GPr"v"- + (-,=,,,,,+ (2.39)
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where

Cp_ O_

C,,_,To_
- CppT'v" - PrT Oy

• Transport of Turbulence Kinetic Energy

.o+ .o+
• Transport of Solenoidal Dissipation

k

(2.40)

(2.41)

)0k _T _ 0p]+ fz _ + o'kp--_y (2.42)

+ -_y --_ + P Oy J (2.43)

2.4 Low Reynolds Number Correction

In order to successfully integrate the equations of motion through the viscous sublayer

to the wall surface it is necessary to modify the eddy viscosity of equation 2.37 and the

dissipation term in the dissipation of turbulence kinetic energy equation 2.43. These

modifications take the form of dimensionless functions that are multiplied to the existing

terms. Both of these functions are functions of only the turbulent Reynolds number

and are described in Chapter 3. The resulting modifications to the equations of motion

may now be described by

and

Pc"ffi_ (2.44)

fiA e' 2 (2.45)
D_- k

where f_, and f2 are the low Reynolds number terms.

2.5 Boundary Conditions

There are two types of boundary conditions employed near the wall to solve for the

flow over a flat plate. The first are wall functions and the second are the boundary

conditions associated with integrating to the wall.
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Boundary Conditions in Wall Layer

f, = ", ln(",Y) + Bu,.
t_ " Id "

v = -Yul d_
_ = ._r_

Table 2.1: Incompressible Wall Function Boundary Conditions

2.5.1 Wall Function Boundary Conditions

The wall function boundary conditions are given in Table 2.1 assuming an incompress-

ible flow [54]. These boundary conditions do not require the use of a low Reynolds

number correction and therefore only the standard k - e model equations need be em-

ployed. These boundary conditions are currently used to verify that the code is properly

solving turbulent flow problems, by comparing the current code with an existing stan-

dard k - • model code.

These boundary conditions are found from the equations governing fluid flow in

the wall layer. The wall layer is defined as the area between the viscous sublayer and

the defect layer in which convection, pressure gradient, and molecular diffusion are

negligible. The resulting governing equations for momentum, dissipation and turbulent

kinetic energy are respectively

where

_yy #T =0

+ o [.T0 1\oy] oyJ

(2.46)

(2.47)

= 0 (2.48)

PC_'k2 (2.49)
#T--

The solution to these equations is specified in Table 2.1. The constants _ and B are

found from experimental correlation [6], and are given as _ = .41 and B = 5.0.

The boundary condition for 9 is a result of satisfying the continuity equation at the

first grid point.
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The introductionof theseboundary conditionsnecessitatesthe inclusionof an ad-

ditionalequationforthe frictionvelocity,u,.,where

u. = (2.50)
V /)wall

and r_u is the wall shear stress. This additional equation is found from the momentum

equation by assuming that in the viscous sublayer there is no convection and no pressure

gradient.

0[ 021(/2+ = 0 (2.5t)

Integrating this equation yields

(/2+ t,r) = (2.52)

In the limit as y enters the wall layer/2 becomes much smaller than PT and may therefore

be neglected. The resulting equation gives the wall shear stress in terms of the eddy

viscosity and the local velocity gradient

0_ - 2

_T-_y = Twall "= Pwall_t_ "
(2.53)

There are also wall function boundary conditions applicable for compressible flows.

The compressible boundary conditions for f¢ and _, shown in Table 2.2, have been

derived by Knight [28] for adiabatic walls. The compressible boundary condition for

fi arises from the compressible Law of the Wall [53] and the boundary condition for

assumes an adiabatic boundary condition with constant total temperature through

the boundary layer. The boundary condition for 9 is approximate. In the present

research, the compressible wall functions boundary conditions are utilized only to find

an accurate first guess for the independent variables in the wall layer and wake region

at the first z station in the calculation.

There are limitations on the applicability of both the compressible and incompress-

ible wall functions. Wall functions are only valid for high Reynolds number flows where

the molecular viscosity is negligible and for flows where y+ = yu_./u_,,_u is well defined.

Flows with complex three dimensional geometries or flows in which separation occurs

may not be handled with wall functions. As these cases comprise a large portion of the
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Boundary Conditions in Wall Layer
½sin -1Afz = u-_ln[ u'Y _ " _,,
21

where A = _-IPrff T-Ta°-M,
2 .L Tu,all oo

_=0
1

u 2

N+ c_ =0

Table 2.2: Compressible Adiabatic Wall Function Boundary Conditions

relevant engineering problems that need to be studied, it is necessary to formulate and

validate low Reynolds number modifications.

2.5.2 Integration to the Wall

When the low Reynolds number correction is utilized boundary conditions are needed

at the wall surface. These are shown in Table 2.3.

Boundary Conditions at Wall Surface

fi=O

_=0

or ¢ T_ll= Oor =

_= 2v.,.u ( °v/_2
\0y)

k=0

Table 2.3: Wall Surface Boundary Conditions

The boundary conditions for fi, _3, and k are found from the no slip condition.

The boundary condition for T depends on whether the wall is adiabatic or if the wall

temperature is specified. The boundary condition for _ arises from the turbulence

kinetic energy equation being applied at the wall. At the wall surface the dissipation

of turbulence kinetic energy is equal to the diffusion

- (2.54)
= l]wall C_y2

However, it is difficult to apply a second derivative as a boundary condition. Equation
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2.54is thereforerewritten and applied as the nurnericaUy equivalent boundary condition

[ (2.55)

2.5.3 Boundary Conditions at the Edge of Computational Domain

The boundary conditions at the edge of the computational domain are given in Table

2.4 where the subscript e refers to the conditions in the free stream at that x location.

Boundary Conditions at Edge of Domain

= ee or _---- 0

k = k_ or _ = 0

Table 2.4: Boundary Conditions at the Edge of the Computational Domain

The condition for U_ is specified according to the pressure gradient that is applied,

and is known a priori, as is the condition for T_. The conditions for ke and ee are found

from the equations governing the decay of freestream turbulence. An initial value for

ke and e_ is specified and subsequent values are found from the solutions to equations

2.56 and 2.57 which describe the decay of freestream turbulence.

U_ _ _e (2.56)
0x

The exact analytical solution for the above equations is known for f2 = 1 and constant

U_ (See Equations 2.60-2.61), however these equations are solved separately by the same

method as the governing equations to achieve consistency with the equations of motion

in the boundary layer.

2.6 Closure Coefficients

To assure results for flows in which no wall interaction is encountered, the standard

k - • model closure coefficients are utilized [39]. These are given in Table 2.5. The
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closurecoefficientsfor the k - e model are found by correlating with the experimental

results of different flow fields, including the far wake, mixing layer and jet [54].

Symbol Source

C_, Turbulent Eddy Viscosity

Cex Production of Dissipation

C,2 Dissipation of Dissipation

Ck Dilatational Dissipation

PrT Turbulent Prandtl Number

ak Turbulent Schmidt Number for f_

cr_ Turbulent Schmidt Number for _,

Value

.09

1.44

1.92

0.0

0.9

1.0

1.3

Table 2.5: k - e Model Coefficients

The choice of these coefficients yields certain properties of different flows. The decay

of isotropic turbulence for incompressible flow is governed by equations 2.58 and 2.59,

where the spatial gradients are assumed to be equal to 0.

_ (2.58)
Ot

and

Ot

The solution to this system of equations is

C_2_ (2.59)

: I¢o[1+ (C_2- 1)_ot/ko]-I/(°_2-I) (2.6o)

_,_= _,,o[I+ (C_2- l)e.ot/ko]-c_21(c'2-I) (2.61)

Where ko and e,o are values for the turbulence kinetic energy and dissipation at t = 0.

By substituting C_2 = 1.92 it is observed that

k _ t -1"°s7 (2.62)

while experimental data [7] shows that

k _ t -1'25 (2.63)

The solution to the k - e model also yields a slightly different value for the constant

in the Law of the Wall. Substituting the wall functions into equation 2.48, and using
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the standardk-e model constants yields _ = V/x/_(C_2 -C_I)O'_ = .43. This value

is slightly higher than the value of _ = .41 found from correlation with experiment [6],

and is used to compare the computed results with the Law of the Wall.
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Chapter 3

LOW REYNOLDS NUMBER CORRECTION

3.1 The Need for a Low Reynolds Number Correction

In order to integrate the k - e model through the viscous sublayer it is necessary to

incorporate a low Reynolds number correction to the model. The need for this correction

arises from an asymptotic analysis of the fluctuating components of the velocity as

y --* O. If a Taylor series expansion is performed on the fluctuating components of the

velocity, for a two dimensional boundary layer flow it may be shown that

u' _ A.(_, t) + B.(_, t)y + C.(_, t)y 2 + ....

v' _ Ay(z, t) + Bu(z , t)y + Cu(z , t)y 2 + ....

As y --_ 0, A. = Au = 0 by the no-slip condition and By = 0 by the continuity equation.

Therefore u t --. y and v' --* y2 as y _ 0.1 This means the Reynolds stress, -pu'v _,

should behave like y3, the turbulent kinetic energy, k, should behave like y2, and the

dissipation, e, should behave like 2vB_ as y ---*0.

However, an examination of the eddy viscosity, ttT = _ shows that the Reynolds

0_ y4stress, ttT_-_y, goes like as y --* 0 without a low Reynolds number correction. In order

to obtain asymptotic consistency it is necessary to multiply the eddy viscosity by a

function, f., that goes as y-1.

Similarly the dissipation term in the transport of solenoidal dissipation equation,

D_=C_2_" (3.1)
k

goes like y-: as y _ 0. To maintain asymptotic consistency a second damping function,

f2, which _ y2 as y _ 0 must be multiplied to this dissipation term.

l It is assumed that the acoustic mode of turbulence is negligible near the wall and that the temper-

ature and hence density fluctuations at the wall may be neglected [45].
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As shown by Speziale et al [48] it is sufficient in the formulation of a correction to

the k - e model to introduce only two damping functions, ft, and f2, if these terms

are of O(y -1) and O(y 2) respectively near the wall and approach unity outside of the

viscous sublayer. Models that do not incorporate this asymptotic consistency have to

add additional damping terms to the dissipation equation. These terms usually modify

the production of dissipation, P_, and are symbolized as the function fl.

3.2 Current Model

The purpose of the current research is the development and validation of a low Reynolds

number correction to the standard k - e turbulence model that may be easily applied

to more complicated three dimensional flow fields. In order to maintain this simplicity

it is desired to make as few corrections to the governing equations as needed, and

to make these corrections independent of the coordinate system. These corrections

should also become negligible outside of the viscous sublayer. It is also desired that

the proper limiting form of the physical properties be maintained as y _ 0. Following

these guidelines only two corrections are made to the governing equations. These are the

inclusion of the damping functions ft, and f2. The functional form of these equations are

chosen such that they are asymptotically correct and they are assumed to be functions

of only the turbulent Reynolds number, Rt = ke._. By making the corrections functions
pe

of only Re the damping functions become independent of the physical coordinate. This

is important in three dimensional applications where the height from the wall is ill

defined, such as that encountered by a corner [32], or when dealing with rows of turbine

or compressor blades [8].

The function f2 is chosen to be

f2 = 1.- (3.2)

which has the proper limiting form f2 _ y2 as y _ 0, and rapidly approaches unity as

Rt _ _. This function is chosen solely because it behaves properly both in the limit as

y ---, 0 and Rt ---*oo, as is seen in Figure 3.1. Other functions could have been chosen,

but these would alter the form of f_, found.
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The functional form of f, is found by solving the equations of motion for the in-

compressible constant stress layer. The functional form obtained for f_, is then applied

without modification to both compressible flows, and flows that experience an adverse

pressure gradient.

The equations for the incompressible constant stress layer, non-dimensionalized by

the friction velocity, u_, and the kinematic viscosity, v, are

• Momentum Equation

0 [C " k+2 Ou+]oy+ ( ,l,-_-+ 1)0--_]=0 (3.3)

• Turbulence Kinetic Energy Equation

0 [ c.s.k+' .ok+]-e++O--_ ( ak e+ +1)0-_ =0 (3.4)

• Dissipation Equation

koy+) _ o[c,s,k+' .0,+]- c,_f, + _ ( _, _+ + 1)0--_ = 0 (3.5)

where the definitions of the variables are given in Table 3.1.

Non- Dimensionalization

y+ = yu_
I/

?2+ _ u
U r

k+ = -#-_-r

e+ _4

Table 3.1: Non-dimensional Parameters Employed in Solving for f_,

The boundary conditions are chosen such that in the limit as y _ oo the boundary

conditions approach the wall functions (See Table 2.1) and when y = 0 the boundary

conditions are those associated with a solid surface (See Table 2.3).

The solution sought is a functional form for f, versus the turbulent Reynolds num-

ber. This is accomplished by solving equations 3.3 - 3.5, in conjunction with specifying

the eddy viscosity. It is emphasized that the eddy viscosity is specified (as described
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below) only for the incompressible constant stress layer. By doing this the system

becomes closed and fu may be found.

For the incompressible constant stress layer, the eddy viscosity is specified by assum-

ing Prandtl's mixing length hypothesis. Prandtl's mixing length hypothesis, equation

1.5, says that the eddy viscosity is dependent upon the gradient of the mean velocity

and some mixing length, Imix, that is a property of the flow [42]. In wall bounded flows

the mixing length is said to be proportional to the distance from the wall [54]. This

allows the specification of the mixing length based upon the distance from the wall. In

the wall layer the eddy viscosity is specified from the Law of the Wall. Using equation

2.53 and assuming the velocity profile is equal to the Law of the Wall, it may be shown

that

l_i_ 1- - (3.6)
d_/ d7¢

and

i,+ : (3.7)

This formulation for the mixing length is only valid in the wall layer and not in the vis-

cous sublayer. Therefore another formulation for the eddy viscosity needs to be specified

in this area. This is done by approximating the eddy viscosity by the polynomial

=  u+3 +  y+5 (3.8)

The ct term arises because of the limiting form of #T as y --* 0, and the/3 term arises

because it is necessary to maintain consistency in the first derivative at the matching

point between the eddy viscosity in the viscous sublayer and in the wall layer.

At some point, y+, the eddy viscosity and its first derivative match in the viscous

sublayer and in the wall layer. This is the transition point between the two viscosities.

At this point a = 25/y +2 and/3 = _,_/g+4. The choice for y+ is made to maintain

B = 5.0 in the Law of the Wall. This value corresponds to _/+ = 33.0. By specifying

the eddy viscosity the system has now been closed, and the equations may be solved to

find the function f, as a function of the turbulent Reynolds number, f_ is found from
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the definition of the eddy viscosity for the k - • model

#+ •+ (3.9)
f_ = T pC.k+2

and is tabulated in Appendix A and displayed in Figure 3.1. The tabulated function f_,

in Appendix A does not behave as y-1 as y ---, 0. The tabulated function f_, _ .0314

as y _ 0. The reason for this discrepancy in the behavior of f_, is that there is no

appreciable difference in the computed solution when the behavior of f_, is y-t as

opposed to approaching the finite value. The value f_, = .0314 is the minimum value

obtained by f_ before it begins to increase as y _ 0. The reason there is no appreciable

difference between the solutions utilizing the correct assymptotic behavior for f_ and

the applied behavior is that in this region the contribution by the eddy viscosity is

minimal compared to the contribution of the molecular viscosity. Having f_ approach

a finite value is computationally easier to apply than to have f_, --* y-1.

The value of the constant C_3 in equation 3.2 is chosen so that the correct value of

+ is found from the DNS data of Spalart+ is maintained. The correct value of •_au•wall

[46] and is equal to 26. It is found that in order to maintain this value for e_ u+ it is

necessary to choose C_3 = 0.17.
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Figure 3.1: Damping Functions vs. Turbulent Reynolds Number a) f2 vs. Rt, and b)

f. vs./_
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Chapter 4

NUMERICAL ALGORITHM

The algorithm has been developed to solve equations 2.35 - 2.43 on a structured, nonuni-

form grid. The resulting boundary layer equations are parabolic in nature and permit

a spatial marching scheme in z. Keller's Box Scheme is chosen to discretize the equa-

tions of motion [4], [22], [23], [24]. This method is second order accurate in both A_

and Ay. Geometric grid stretching is employed in y to allow better resolution of the

viscous sublayer. A regridding algorithm has been developed to resolve the turbulent

non-turbulent interface and to allow for the growth of the boundary layer.

4.1 Nondimensionalization

The solution of the system of equations defined by equations 2.35 - 2.43 is facilitated if

the variables are non-dimensionMized. The non-dimensionalization employed is given in

Table 4.1 where • denotes a dimensional parameter. The boundary condition for e,,,aU =
. 2

(OV/'_/Oy) necessitates changing the independent variable for the turbulence2v, oazz

kinetic energy in the governing equations from/z to v/_. The variable _ is introduced

and defined as v/k.

The resulting system of equations utilizing nondimensional parameters is

• Continuity Equation

+ peTe - 0 (4.1)
Oz Oy

where the subscript e denotes evaluation at the edge of the boundary layer.

• Transport of Momentum Equation

p_Te-_-_ + peT¢_ Oy - fl + Redo Oy (PT + #)_y
(4.2)
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Variable Non- Dimensionalization Variable Non- Dimensionalization

z z* = z6 o y y* = y,5o

_, _,*= _,u_ + +"= +u_
p :. :p_ _ p. -. ,2= = pp_U_

-. v2
ev = ev 6*

= TT g

_T u+ = uruL

4" = 4vL

U r _ U_U T

= u_ :o_ T,,,ou T:,ou = T.,_uT£

Table 4.1: Non-dimensional Parameters Employed in the Present Code

where

Redo- P*_U_6° (4.3)

(4.4)

fu is a Tabulated Function vs. Turbulent Reynolds Number given in Appendix A

= p¢U¢due (4.5)
dz

Since pressure is assumed constant across the boundary layer, the ideal gas law,

equation 2.34, yields

pT = p_T_ (4.6)

• Mean Energy Equation

M£( 7 - 1) p_T_ [_' Oz ÷ _ oy ] + 2p_T¢-_

• Transport of Turbulence Kinetic Energy Equation

2peTefi(70_ +_0(7 PT (Ofi_ 2

1 0 #T .04 _T42

• Dissipation of Solenoidal Dissipation Equation

p_T_TO_ _0_, #T e_(Ou) _+ -

A _ 1 o _r + p
-C_p_1¢-_-_ + Redo Oy a_ Oy J

(4.7)

(4.8)

(4.9)
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where

f2 = 1. -- e - C c3 v/-_t

q4

Rt = Re6oPeTe _'-_e

= e,_ + ed

(4.1o)

(4.11)

(4.12)

The code has been adapted to incorporate the the modification proposed by Sarkar [41]

which makes ed = CkF(_,,, Mr2). However, the effect of this modification has not yet

been examined. Therefore for all results obtained Ck = 0 and g : Q.

4.2 Keller's Box Scheme

To solve the equations of motion described in equations 4.1 - 4.9 by Keller's Box Scheme

they must first be transformed into a system of first order, coupled, partial differential

equations. This is accomplished by defining the variables h,a,b,and c as the partial

derivatives with respect to y of fi,_, v_ and T respectively. The resulting system of

equations becomes

• Continuity Equation

+ peTe - 0 (4.13)
Oz Oy

• Transport of Momentum Equation

fi 0fi _ 0£l

P_T__-_z + PeTe_, Oy
-8+ ----

1 0

Re6o Oy
[(_r + _)h] (4.14)

• Definition of O_/Oy

h __

c9£L

Oy

• Dissipation of Solenoidal Dissipation Equation

fi c9_, £J PT (,_ h2
peTe¢----Oz + p_T_-_a= +C_ t Redo "_

._ _ I2_2 1 0 [r"r+p)a 1]

(4.15)

(4.16)
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• Definition of O_,,/Oy

a -

Oy

• Transport of Turbulent Kinetic Energy

2p _T fi_ O(t "v_ PT h 2

Re_o _-y -_-_k+ ft 2qb- --_ k j - p_T¢_

• Definition of O(710Y

• Mean Energy Equation

M£( 7 - 1) p_T¢ L_, Oz

1 O[(.TM (7 -i)Re o Oy

• Definition of OT/Oy

(4.17)

(4.18)

04 (4.19)
b=oy

1
(4.20)

Cy is the grid stretching parameter and is typically chosen between 1.01 and 1.2; Yl is

set equal to zero when integrating to the wall, and is chosen such that Yt is in the wall

Ay j : Ay 1 2 < j < jsbegin

Ay j = CuAy j-1 jsbegin <_j < jsend

AyJ = Ay js_'A jsend < j <_jl

yj = yj_l + Ay j 2 <_j < jl

The use of Keller's Box scheme necessitates creating a computational mesh over

which the equations may be discretized. The grid spacing is constructed such that there

is geometrical grid stretching in Ay to allow for more points in the viscous sublayer. A

larger number of points is required near the wall to obtain the necessary accuracy [4].

The grid is found from the following formulation where jsbegin and jsend are chosen to

allow for the geometric stretching and jl is the number of points in the computational

domain:

c - (4.21)
Oy
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layer when using wall function boundary conditions. Typically y+ is chosen between 50

and 100 when using wall functions. The solution is independent of this initial value as

seen from the solution obtained in Chapter 4 comparing two different codes, using two

different values of y+. A large number of points is used in the computational domain;

jl is typically between 300 and 1000 points, and grid resolution studies have been

performed to show that each solution is independent of the number of points chosen.

Variable grid spacing in x is also employed. In the area near the initial guess required

for solving by the Newton's method, large changes in the independent variables occur.

If the grid spacing in z is too large, these changes cause numerical oscillations that

grow causing the solution to become unphysical. In areas far from the initial guess,

where the flow is well developed, these drastic changes in the independent variables do

not occur and a larger Az may be chosen.

A typical computational cell is seen in Figure 4.1. Keller's Box scheme works by

discretizing the equations of motion about the center of the computational cell [22].

Equations 4.13 - 4.21 are discretized by using central differencing and averaging about

the cell center. The discretized equations are given in Appendix B. This method of

discretization may be shown [4] to be second order accurate in both Ay and Ax, and may

be increased to O(Ay 4, Ax 4) if Richardson extrapolation is used. However, Richardson

extrapolation is not employed because of the regridding scheme utilized.

4.3 Newton's Method

Newton's method is employed to solve the system of nonlinear algebraic equations

resulting from Keller's Box Scheme. Newton's method requires the solution to be known

at the n - 1 grid location. This necessitates an initial guess at n = 1. The initial guesses

for the independent variables are made based upon the physics of the flow field being

tested. In the typical computational problem the initial transient region associated

with the initial guess for the independent variables manifests itself as an unphysical

change in the skin friction as the solution marches downstream. There is typically a

sharp drop in the skin friction followed by a slow growth, culminating in a maximum at

approximately 50 initial boundary layer lengths downstream. Following this maximum
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the skin friction behavesin the physicallyexpectedmanner. Fromthis behaviorand

the subsequentbehaviorof the skinfriction after this maximum,it is concludedthat

the transientregionassociatedwith the initial guessis of the order5060and that the

solutionafter 506ois physicallycorrect.

Thesystemof equationsdefinedby thediscretizedequationsB.25- B.34is denoted

by F, and the solution vector for the independent variables is denoted by u_. Both /_

and u_ are given in Appendix B. Newton's Method works by iterating

(4.22)

(4.23)

The parameter OFi-1/Olu i-1 isuntil some convergence criteria on 6u_ is met [18].

termed the Jacobian, J, and is detailed in Appendix C, while an explanation of the

convergence criteria is given in Appendix D. The vector 6u_ is the change in the solution

matrix for the current iteration. If the initial guess for the solution matrix is close to the

correct solution, Newton's method will converge quadratically causing 6u_ to become

smaller with each iteration.

Newton's method is implemented by making an initial guess for the independent

variables at n. If n = 1 then the initial guess is based upon the physics of the flow

problem; if n > 1 then the initial guess is the value of the independent variables found

at n - 1. The ordering of the equations is made such that the Jacobian of equation

4.22 is a 9 × 9 block tridiagonal matrix as seen in Figure C.1. This allows for a faster

computational solution over a nonbanded matrix. The method of solving the resulting

system of equations given by equation 4.22 is accomplished by using the LINPACK

solver created by Cleve Moler [36]. The LINPACK solver works by taking the Jacobian

in banded form and factoring it by Gauss elimination. The factored matrix is then

solved to yield the solution matrix 63. The old solution is then updated by 6u_ and

the method is repeated until the desired convergence criteria is met, with the Jacobian

being updated after each iteration.
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4.4 Regridding

It is known from the Blasius solution that laminar boundary layers grow like v/_, and

with a proper grid transformation the computational grid can also be made to expand

as such. However, this transformation or a similar grid transformation will not work

with the current turbulent boundary layer model, as there is no universal grid transfor-

mation for the rate of growth or decay of the turbulent boundary layer in the presence

of an arbitrary pressure gradient. Two possible solutions exist to solve this problem.

The first is to apply a grid transformation such as the Levy-Lees transformation [14]

which grows as the _ and include enough points in the free stream to allow for the

increased growth over the x/_-, and as the boundary layer grows to add more points in

the free stream. This is a simple solution and a typically applied option. However, tur-

bulent boundary layers with molecular viscosity also experience strong gradients at the

turbulent non-turbulent (TNT) interface. The method of transformation given above

does not guarantee adequate numerical resolution of these gradients. If these gradients

are not properly resolved, Keller's box scheme creates 2Ay numerical oscillations which

grow causing the numerical solution to become unphysical. To alleviate this problem

it is necessary to apply a regridding scheme that guarantees sufficient points within

the TNT interface to resolve these gradients. This regridding scheme also matches any

growth in the height of the boundary layer.

The TNT interface is numerically defined as the region between the minimum of

the derivative of the turbulence kinetic energy with respect to y and the point that

is equal to 10°/0 of this value closer to the edge of the computational domain. It is

established that sufficient resolution is achieved if there are 30 points within this TNT

interface. The edge of the boundary layer is defined as the point on the plot of b vs.

y where the line tangent to the maximum of c%/Oy in the TNT interface intersects

b -- 0. The application of the regridding scheme allows the use of non-transformed

coordinates in the computation. Linear interpolation is employed to match the values

of the independent variables at the old grid locations to the new grid locations.
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Chapter 5

VALIDATION

The code has been validated by comparing the computed laminar solution to the Blasius

solution and by comparing the computed turbulent solution to an existing standard k-•

model code.

5.1 Laminar Solution

In order to validate the numerical algorithm, it is preferred to compare the resulting

numerical solution with art exact analytical solution. However, no such solutions exist

for turbulent boundary layer flow. Solutions do exist for laminar boundary flow. If the

turbulent terms are removed from the governing equations, the resulting equations for

continuity, momentum and energy revert back to their laminar form, and the analytical

solution becomes the well known Blasius solution for flow over a flat plate [53] where

/ Redo

rl = Y* V 2/t_x*

df f, u*
dy U_

f"-l- f f" = 0 (5.i)

with the boundary conditions

f(0) = 0

f'(0) = 0

f'(_) = 1

For adiabatic, compressible flow, assuming Pr = 1 and that the molecular viscosity

varies linearly with the temperature, the velocity profile reduces to the solution of
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M_ Re6o

O.05 250.

2.00 250.

4.00 250.

Re6(_.d ) # of Pts

2500. 300

2500. 300 .004

X*

.I

.I

2500. 300 .004 .1

Table 5.1: Cases Run for Laminar Flow

equation 5.1 and the temperature profile is given by

T* 1

To_ - 1 + 5( 7 - 1)M_(f') 2 (5.2)

The numerical algorithm has been tested for laminar flow by setting #T = 0 and

solving only the equations for conservation of mass, momentum and energy subject to

adiabatic and no slip boundary conditions at the wall and matching the values in the

free stream for T and u at the edge of the computational domain. Table 5.1 shows the

cases which have been run.

Figures 5.1 - 5.5 compare the computed Blasius solution with the theoretical solu-

tion. The calculation is carried out by assuming an initial velocity and temperature

profile and then marching downstream for 10060. This represents a 10 fold increase in

the height of the boundary layer, with any transients associated with the initial guesses

for the profiles washing out. Excellent agreement is seen between the theoretical Blasius

solution and the computed solution. It is concluded that the code is accurately solving

those parts of the governing equations responsible for laminar flow.
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M_ Redo # of Pts

.05 47,530 300

.05 47,530 600

.004

.002

Z o

.02

.01

Table 5.2: Cases Run for Validation of z - y Code with Existing _ - _/Code Using Wall
Functions

5.2 Turbulent Validation

In order to validate that the code is correctly solving the equations of motion for

turbulent flow problems, the code is compared to an existing standard k - e model code

which utilizes wall functions as the boundary conditions [31]. This second code uses

the Levy-Lees transformation (_ - 1/ coordinates) and regrids the TNT interface in the

same manner as the first code. 1 For the purpose of validation, the code to be validated

also uses wall functions for boundary conditions near the wall, and the low Reynolds

number modification is turned off. The governing equations for the two codes are the

same, except the _ - r/code solves the turbulent kinetic energy equation for k and not

v/k; and a stream function is used in place of the normal velocity v. The incompressible

boundary conditions for both codes are given in Tables 2.1 and 2.4.

An incompressible case has been run to verify that the code is accurately solving the

solution for the independent variables. Results are seen for the independent variables

u,k and • and for the skin friction in Figures 5.6 - 5.12. For convenience the" has

been removed. The solutions for u, k, and • are plotted at z = 1006o and z = 2006o.

Extremely close agreement is seen between the two codes with errors typically being

less than 1%. There is also no appreciable difference in the solutions at the two z

locations. The grid resolution study yielded no appreciable difference in the solution

for each of the codes, either. As these two codes were developed independently, utilizing

two different non-dimensional parameterizations and coordinate systems the possibility

1This second code was originally developed to test new terms in modeling hypersonic effects in the

k - e model [25]. However, the lack of an acceptable low Reynolds number correction to k - e model

prompted the current research. The second code has been validated against the Blasius solution and

adapted to solve boundary layer flow problems using Wall Function boundary conditions by the current

author.
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of an identical error in coding is highly improbable. We therefore conclude that the

present turbulent boundary layer code is validated.
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Chapter 6

RESULTS

The proposed turbulence model has been tested by examining both high and low Mach

number adiabatic flow, high Mach number isothermal flow, and high Mach number

adverse pressure gradient flow over a fiat plate. Comparisons are made with the exper-

imental results of Weighardt for low Mach number flow; and Fernando and Smits for

high Mach number, adverse pressure gradient flow. Solutions are also compared with

experimental correlations.

6.1 Incompressible Adiabatic Boundary Layer

Table 6.1 shows the cases run for flows with low Mach number, M_ = .05, for which

the flow is essentially incompressible. Comparisons of the computed profiles have been

made with both the experimental data of Weighardt and theoretical correlations. The

correlation used in comparing the velocity profile is the Law of the Wall and Wake

[6]; while the computed skin friction coefficient is compared to the Karman-Schoenherr

equation [16].

• The Incompressible Law of the Wall and Wake

u+ = _llny++B+2IIsin2(_ry)-a 2_

a = .43

B = 5.0

II = .55

U
_+ _

"tt r

(6.1)
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M_

.05

.05

Redo # of Points

14,260 500

14,260 1000

A (_)mi, _ A (_o),_,_ kiso kgrad _e,_d/_o

4 × 10 -6 .1 0 1 653

4 × 10 -7 .05 0 1 653

Table 6.1: Cases Run for Low Mach Number, Adiabatic Wall, Integrating to the Wall

• Karman-Schoen_herr Equation

_I - 27"08 _l°gl°R--e°)2 -t- 25.111Oglo Ree + 6.012 (6.2)

For incompressible flows C! and Re_ are the computed skin friction and momentum

thickness Reynolds number respectively. For compressible flows these variables are the

transformed values. Experimental data correlates with equation 6.2 to within ±10% of

the skin friction [16].

Figures 6.1 and 6.2 compare the computed skin friction with the data of Weighardt

and the theoretical value as given by equation 6.2. In these figures, the transient

region associated with the initial guess for the independent variables is retained in the

plot; however, only the region downstream of the transient should be compared with

experiment. The region outside of this initial transient falls within +10% for both the

Weighardt data and the Karman-Schoenherr correlation.

Figure 6.3 compares the computed velocity profile with the experimental data of

Weighardt at Ree = 12,222. Excellent agreement is achieved between the computation

and experimental data. Figure 6.4 compares the same velocity profile against the Law

of the Wall. Again excellent agreement is seen, with an almost perfect match in the

log region. In this region there is a less than 1% difference between the theoretical and

computed velocity. Very good agreement is also achieved between the computed and

theoretical velocity defects, U+ - u +, as seen in Figure 6.5.

Figure 6.6 compares the computed profile for e+ and the profile predicted by the

DNS data of Spalart [46]. As described in Chapter 3 the choice of C_3 is made so that

the calculated value of e+ matches the value predicted by Spalart. As expected thewall

model accurately predicts the wall value of e+.
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Doublingthe number of points perpendicular to the plate, decreasing the order of

the first grid point by a factor of 10 and halving the time stepping is seen to have a

minimal effect on the solution. The computed solution is found to be independent of

the grid employed to less than 1%.
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6.2 High Mach Number

Three different Mach numbers have been examined, each with two boundary condi-

tions for the temperature. These conditions correspond to an adiabatic wall and an

isothermal wall with T_,_u/Tadi,, = 0.4. An examination has been made comparing the

transformed velocity profile with the compressible Law of the Wall and the Law of the

Wake [6], and comparing the computed skin friction with the Van Driest II theory [16].

The low Reynolds number correction employed has been developed based upon in-

compressible assumptions, but has been utilized for compressible flow cases in order

to see the effect compressibility has on the solution. As many practical engineering

applications requiring two equation turbulence models occur at high Mach numbers, it

is important to test any model in the supersonic regime. In performing this analysis no

new modifications have been made to the governing equations to account for compress-

ibility effects. Morkovin's hypothesis has been assumed. Therefore only changes in the

mean density are taken into account, with fluctuations to the mean density assumed

small relative to changes in the mean density [54], [37]. The turbulent Reynolds number

used in calculating the low Reynolds number modifications is defined by

pk 2
- (6.3)

#e

For each of the cases run a grid analysis has been completed demonstrating that

the solution of the independent variables is independent of the grid employed to within

less than 1%.

Comparisons have been made between the computed skin friction coefficient, the

computed velocity, and the computed wall temperature with theoretical values. The

theoretical skin friction coefficient is based upon the Van Driest II theory [16]. The Van

Driest II theory modifies the Karman-Schoenherr equation and the computed Reynolds

number based on the momentum thickness by a compressibility correction

C! = CyFc (6.4)

Ree = F_Reo (6.5)
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where

F_

A =

= .18M_/(sin -1 ot + sin -1 fl)

_wall

= (2A 2- B)/(4A 2 + B2)}

B/(4A" + B_)_

.9Tc/T_,,_u

_ T...T._
Tc (1.9 T,_au)

Twall

(6.6)

(6.7)

(6.s)

(6.9)

(6.10)

(6.11)

As in the Karman-Schoenherr equation there is an estimated uncertainty of ±10% in

the Van Driest II theory [16].

The computed velocity profile is compared to the compressible Law of the Wall

and Wake by transforming the computed stream-wise velocity. The transformed non-

dimensional velocity is defined by

1 [ 2A_u-B _ 1 B
u¢ = _sin -1 \_-__-4_- 2] + _sin -1 (v/B2 + 4A2) (6.12)

where

A rr'y - 1 12 Tw_u

B = PrTQ_u(7 - 1)M_
poT_u_

The theoretical compressible Law of the Wall and Wake is given by

u_ = --lny + + Bu_. + -- sin 2 (6.15)

The constants axe the same as used for the incompressible Law of the Wall and Wake.

Both the inner log region and outer wake region are examined. The inner, log region

directly compares the transformed velocity profile with the Law of the Wall, while the

outer region is compared by examining the velocity Defect Law

U+_-u+:l(2II[1-sin'(2_)]-in_) (6.16)

which arises from equation 6.15. U+o_ is the transformed velocity at the edge of the

boundary layer, 8, divided by the friction velocity.

(6.13)

(6.14)
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MOO

2.0

2.0 1,901

4.0 3,802

4.0 3,802

6.0 5,703

6.0 5,703

Redo × 103 # of Points

1,901 500

1000

500

1000

500

1000

4 x 10 -6

4 x 10 -7

4 x 10 -6

4 x 10 -7

4 x 10 -6

4 x 10 -7

_(_o) .... kiso kgrad zend/6o

.02 0 1 200

.01 0 1 100

.02 0 1 200

.01 0 1 100

.02 0 1 200

.01 0 1 100

Table 6.2: Cases Run for High Mach Number, Adiabatic Wall, Integrating to the Wall

6.2.1 Compressible Adiabatic Boundary Layer

Table 6.4 shows the cases run while integrating to an adiabatic wall employing the

low Reynolds correction at three different high Mach numbers. It has been observed

that there is less than a 1% difference between the solutions when the grid spacing is

modified as shown. For each of these cases the computation is run until the transient

associated with initial guess for dependent variables vanishes. At this point the compu-

tation is continued for another 10006o, to acquire solutions with which to compare with

theoretical profiles. Figures 6.7, 6.8 and 6.9 compare the computed and theoretical skin

friction profiles. For each of the Mach numbers, the computed skin friction falls within

the 10% uncertainty in the Van Driest II theory [16].

Figures 6.10, 6.11 and 6.12 compare the computed, transformed velocity profile to

the Law of the Wall. It may be seen that in the log region there is excellent agreement

between the computed and theoretical solutions. For the theoretical solutions _¢ is

chosen to be equal to .43 as predicted by the standard k - e model [54]. With increased

Mach number it is seen that the height of the log region decreases.

Figures 6.13, 6.14 and 6.15 compare the computed and theoretical transformed

velocity defect as described by equation 6.16. Excellent agreement is achieved at M_ =

2.0. There is increasing deviation from the anticipated result with higher Mach number.

Figures 6.16, 6.17 and 6.18 and Table 6.3 compare the evolution of the computed

adiabatic wall temperature with the result, as seen in equation 6.17, obtained from the
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asymptoticanalysisof the turbulencemodelequations[28].

T=di_ _ 1 + 7 -- 1 pX/_TMi (6.17)Too ---5--

Close agreement is achieved, but it is observed that the deviation from the theoretical

increases with increasing Mach number. The more common expression for the the-

oretical adiabatic wall temperature is to replace Pv/Pv/Pv/Pv/Pv/Pv/P_by PrT in equation 6.17. A

comparison of the computed result with this new theoretical value shows a difference

of less than 2% over the range of Mach numbers.

LEGEND

Moo T_ai_lc_zc/Too
2.0 1.71

4.0

6.0

1.76

_error

2.8

3.85 4.04 4.7

7.34 7.83 6.3

Tadlalcalc/Too is the calculated adiabatic wall temperature

Tadialtheory/Too is the theoretical adiabatic wall temperature from equation 6.17

Table 6.3: Theoretical and Calculated Adiabatic Wall Temperature
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MOO

2.0

2.0 1,901

4.0 3,802

4.0 3,802

6.0 5,703

6.0 5,703

Re6o x 103 # of Pts

1,901 500

1000

5OO

I000

500

1000

4 × 10 -6

4 × 10 -_

4 × 10 -6

4 × 10 -7

5 × 10-6

5 × 10-7

_ (_)_._ kiso kgrad zend/6o

.02 1 1 200

.01 1 1 100

.02 1 1 200

.01 1 1 100

.02 1 1 200

.01 1 1 100

Table 6.4: Cases Run for High Mach Number, Isothermal Wall (T_u/T_di_ = 0.4),

Integrating to the Wall

6.2.2 Compressible Isothermal Boundary Layer

A series of cases have been examined for an isothermal, flat plate boundary layer

with T,_,u/Tad{a = 0.4 where T,d{, is given by equation 6.17. The Mach numbers

and Reynolds numbers are the same as for the adiabatic, flat plate boundary layer.

These cases are run by first computing the solution for the adiabatic, flat plate bound-

ary layer and then modifying the boundary condition for the temperature such that

the wall is slowly cooled. This precludes the necessity of finding a good first guess for

the temperature profile in the viscous sublayer. The solution is found through a series

of 5 - 6 cooling steps. Once the desired wall temperature is obtained the solution is

run until the transients associated with the initial profile at that wall temperature have

become negligible. The solution is then marched downstream for another 200060, where

60 is the initial guess for the boundary layer height associated with the initial adiabatic

calculation. The value of the local boundary layer height at the beginning of the final

cooling process is approximately 10 x 60.

Figures 6.19, 6.20 and 6.21 compare the computed and theoretical skin friction

profiles. It is seen that the computed skin friction falls within the 10% uncertainty of

the Van Driest II theory for M_ = 4 and M_ = 6 and varies above this uncertainty at

15% for M_o = 2.

Figures 6.22, 6.23 and 6.24 compare the computed, transformed velocity profile

to the compressible Law of the Wall. It may be seen that in the log region there is

good agreement between the computed and theoretical solutions. There does appear



62

to be a deviation from the theoretical value of B in the compressible Law of the Wall.

For an isothermal, compressible, flat plate boundary layer, with T,o_u/T_d_a = 0.4 the

computation predicts B to be approximately equal to 4 instead of 5.

Figures 6.25, 6.26 and 6.27 compare the computed and theoretical transformed

velocity defect. There is slightly better agreement achieved in the velocity defect for

the isothermal flat plate boundary layer than that achieved at the same Mach number

for an adiabatic wall.

Table 6.5 displays the computed Reynolds analogy factor and the deviation from

the theoretical value. The Reynolds analogy factor is defined as

2Ch Q ou
C] - p_oU_Cp(T_,_,t- T_d{_) (6.18)

From asymptotic analysisofthe model equations[28]the theoreticalvalueis

2Ch I
- 1.1 (6.19)

C f-- PrT

There is increased agreement between the theoretical value and the computation with

increasing Mach number.

MOo

2.0

4.0

6.0

2Ch/C! %error
1.33 20.9

1.24 12.7

1.15 4.5

Table 6.5: Reynolds Analogy Factor, T_ll/T_di_ = 0.4
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Figure 6.23: Computed and Theoretical Transformed Velocity Profiles for Isothermal

(T_,_n/T_dia = 0.4), M_o = 4 Flow
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Figure 6.24: Computed and Theoretical Transformed Velocity Profiles for Isothermal
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6.3 Adverse Pressure Gradient

A comparison of the computational result has been made for flow over a fiat plate

experiencing an adverse pressure gradient with the experimental results of Fernando

and Smits [10], [11], [43]. Fernando and Smits calculated the properties of a Mo_ = 2.92

adverse pressure gradient flow. Complete details of this experiment are given in [11].

Single normal hot wire and crossed wires were utilized to acquire the data, including

the velocity profile, surface shear stress, Mach profile and the Reynolds stress.

The same flow conditions at the flow inlet are employed as that given by Fernando.

These conditions are denoted by oo. For simplicity the point where the pressure gra-

dient is begun is denoted x = _*/6o = 0 where 60 = 24.69mm is the initial boundary

layer height at this point, as computed numerically. To ensure a converged solution at

z = 0 the numerical solution is marched until the point where the Reynolds number

based upon displacement thickness, Re¢, in the code matches the inlet value of the

experimental data at z = 0. The properties of the inflow for the experiment and com-

putation are given in Table 6.6. Using the definition of boundary layer height defined

in Chapter 4 it is seen that the numerical solution underpredicts the value of the initial

boundary layer height, _o, with the experimental result of Fernando by less than 5%

at z = 0, however, the momentum thickness is overpredicted by approximately 10%.

The definition of the boundary layer height employed by Fernando et al is that the

"boundary layer height is the measurement point closest to that point where

Poe - P0_ = .02[P0_ - P_o] (6.20)

Poe is the tunnel stagnation pressure in the freestream and it is equal to the tunnel

stagnation pressure, within experimental error" [11]. This varies from the definition

employed in the computation and may, along with experimental error, account for this

small discrepancy.

Figure 6.28 shows the experimental surface pressure and the pressure employed

in computationaUy calculating the flow behavior. The wall surface static pressure is

used because, as seen in Chapter 2, it is assumed that the pressure is constant across

the boundary layer. The data of Fernando shows this to be true within the +4%
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Property Experiment Code Percent Error

Moo 2.92 2.92 0.0

Re¢ 453,600 453,600 0.0

Redo 1,663,200 1,582,000 4.8

Re_ 75,600 83,400 9.4

Table 6.6: Adverse Pressure Gradient Incoming Flow Conditions at z = 0

experimental error. It is necessary to smooth the experimental pressure distribution of

Fernando to avoid numerical oscillations. To evaluate the effect of this smoothing two

pressure distributions are calculated to simulate the experimental data. The first (Case

1 Ap) is a very smooth case of the experimental pressure distribution, while the second

case (Case 2 Ap) more accurately matches the given profile. It is seen below that there

is little difference between the solution of these two cases. For this reason either may

be chosen to represent the experimental pressure distribution.

In order to guarantee the solution is independent of the grid spacing, a grid resolution

study has been performed. The parameters implemented in running each of the cases

are given in Table 6.7. It is found that the solution is independent of the grid spacing

chosen to less than 1% for both Case 1 Ap and Case 2 Ap.

MOO

2.92

2.92

Re¢ # of Pts

453,600 500

453,600 i000

2.63 × 10 -6 6.579× I0-a 0 1 16.0

2.63x 10-7 3.290x 10-3 0 1 16.0

Table 6.7: Cases Run for High Mach Number, Adiabatic, Adverse Pressure Gradient
Flow

Figure 6.29 compares the computed skin friction profile with that found by Fernando

et al, where the assumed experimental uncertainty in the skin friction is ±10%. In order

to alleviate any problems that may arise with the definition of the boundary layer height,

the skin friction is evaluated using the inlet conditions at oo, such that

(6.21)C/s- 1 2
p_ U_

Fernando calculates the wall shear stress in three ways. The first is to use Preston probe
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measurements and reduce the data according to the calibration scheme of Bradshaw

and Unsworth [2], [11]. The second method is to transform the measured velocity profile

by the Van Driest transformation and find the value of u_- that best fits the Law of the

Wall. The third method is to transform the measured velocity profile by the Carvin et

al compressibility transformation [3]

uc = lsin-l(a_u)a (6.22)

= 1)/2 (6.23)

and again find the value of u_ that best fits the Law of the Wall. Each of these

methods agree with each other within 6%. The computational results differ with the

experimental results by a maximum of about 20% which occurs in the area of maximum

pressure gradient. This is not an unexpected result as it is seen in Figure 6.7 that the

error in the computed skin friction may be as high as 10% in a zero pressure gradient,

adiabatic flow. The error between computation and experiment is seen to decrease in

the area of favorable pressure gradient (x/_o > 11).

Figures 6.30 and 6.31 compare the computational and experimental u-velocity and

Mach profiles respectively at _/_o = 10.3. Experimental data for the velocity and Mach

profiles are found from pitot probe measurements. Very good agreement is seen between

the numerical and experimental velocity profiles, with the maximum error being less

than 4%. This error is well within the 5% experimental error [11]. There is an increased

error in the Mach profile. This is expected as this profile is dependent upon the accurate

numerical calculation of both the velocity and local temperature profiles. Errors at this

location are less than 5% which is slightly higher than the 3% experimental error [11].

There are very negligible differences between the velocity and Mach profiles for the two

different pressure gradient distributions examined. For both pressure distributions and

profiles the differences are less than 2%. Figures 6.33 and 6.34 demonstrate similar

results at Z/_o -- 15.5. At this location the comparison between the computed and

experimental results for the velocity and Mach number are about the same. The error

is everywhere less than 2% for the velocity and again less than 5% for the Mach number.

The difference between Case 1 Ap and Case 2 _p is everywhere less than 1% for the
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velocity and Mach profiles at this location.

Figure 6.32 and Figure 6.35 compare the computed Reynolds stress with the experi-

mental Reynolds stress. The computed Reynolds stress is the Favre averaged Reynolds

stress, -putty _', which is slightly different than the stress, -#u_v ', found by experiment.

According to the data of Fernando [43] and the analysis given in Appendix E it may

be shown that -pu_v _ differs from -_u'v _ everywhere by less than 10%. This is less

than the -5% to +30% experimental error given for the kinematic Reynolds stress by

Fernando [10].

There is a significant difference between the computed and theoretical Reynolds

stresses at both locations. At z//_o = 10.2 the peak value of the computed non-

dimensional Reynolds stress is .00174 for Case 2 Ap and .00168 for Case 1 Ap, with this

maximum occurring at y/_ = .28 and y/_ = .29 respectively. The experimental data

predicts this maximum to be .0013 at y/tf = .49. The difference in the Reynolds stress

between the two pressure distributions may be attributed to the fact that the Reynolds

stress is influenced to a greater extent than either the velocity or Mach profiles by the

pressure distribution, and even a slight modification in the distribution will have a no-

ticeable effect on the Reynolds stress. The largest difference between the computation

and experiment occurs in the region y/6 < 0.5. According to Fernando, due to Mach

number effects the crossed-wire underpredicts the Reynolds stresses below y/6 = .46 at

Z/6o = 10.2 and y/_ = .42 at Z/6o = 15.4. Fernando warns that "crossed-wire results

below these limits must be treated with caution" [11]. In the outer half of the bound-

ary layer there is better agreement between the computation and experiment. There is

also very close agreement between the computations of the two pressure distributions

employed.

The comparison of the computational results with the experimental data for the

Reynolds stress at _/6o = 15.4 is slightly better than at _//_o = 10.2. At _/6o = 15.4

the peak non-dimensional Reynolds stress is computed to be .00134 at at y/tf = .335;

while the experimental data predicts the peak non-dimensional Reynolds stress to be

.00130 at y/_ = .468. Although there is only a 3% difference in the peak Reynolds

stress, the experimental prediction of this peak occurs farther into the boundary layer.
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The experimental data also predicts a faster decay of the stress as y ---, 0. In the outer

half of the boundary layer there is better agreement at this location. There is also very

close agreement between the computations of the two pressure distributions employed.
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6.4 Conclusions

A low Reynolds number correction to the k - e two equation compressible turbulence

model has been proposed. This model avoids many of the limitations of other models.

The proposed model is independent of the physical coordinate away from the wall, it

uses the physically correct boundary condition for the dissipation and does not require

a pseudo-dissipation rate, and it uses the minimum number of modifications required to

integrate to the wall. The current model, unlike previous models, accurately predicts

the DNS data of Spalart for the dissipation at the wall. For the above reasons the

proposed model presents advantages over current "proven" models.

It has been shown that the proposed model accurately predicts the flow fields of

both incompressible and compressible two dimensional flat plate boundary layers. For

most cases the predicted skin friction falls within the +10% experimental uncertainty,

and the computed velocity profiles often lie on or are near the Law of the Wall. The

model also reasonably predicts the velocity defect at low Mach numbers, but the error

increases with increasing Mach number.

The proposed model moderately predicts the behavior of two dimensional, com-

pressible flat plate, pressure gradient flows. The results of these computations do show

promise. The model works very well in being able to predict both the velocity and

Mach profiles of this type of flow as compared to the experimental work of Fernando.

It also predicts a similar profile for the Reynolds stress. In the region close to the

wall, y/$ < 0.5, there are large discrepancies between the computation and experiment.

These differences become smaller farther into the boundary layer. Although a large

discrepancy does exist between the calculation and experiment; as stated by Fernando,

the region of highest discrepancy is also the region where the experimental results are

suspect.

6.5 Future Work

Although the results presented for both low and high Mach number flows over a flat

plate are encouraging, future testing of this turbulence model is required. Future testing
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shouldincludecomparisons against solutions of more complicated two dimensional con-

figurations such as a curved ramp or an expansion corner. Comparisons could be made

with the experimental work of Taylor [50] and Jayaram et al [19] and Zheltovodov et al

[58]. A brief description of these and other experimental cases is described by Settles

and Dodson [43].

The logical progression after these two dimensional cases have been examined is

the application of the proposed model to more complicated three dimensional flow

configurations. Such examinations should include both single fin [29] and double fin

("crossing shock") configurations [30], [12]. The examination and accurate prediction

of the flow field structure for the crossing shock configuration is important in its appli-

cation to hypersonic inlet design. Current computational models demonstrate general

agreement with experimental data for surface pressure and shock structure. Boundary

layer variables such as pitot pressure, and yaw angle also demonstrate general agree-

ment; however, the computation of surface heat transfer is not yet accurately predicted

[30]. It is the surface heat transfer which is especially important in the design of in-

lets to gauge the optimum amount of cooling required and the materials necessary for

fabrication.
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Appendix A

Tabular Form of the Low Reynolds Number Correction

for f#

The following are the partial results found by Knight for the computation of f_, versus

R, [271.

Rt f_ Rt f_
0.0 0.031481 0.11572E-07 0.031481

0.22891E-06 0.031481 0.62229E-06 0.031481

0.29723E-05 0.031481 0.56618E-05 0.031481

0.17282E-04 0.031481 0.28333E-04 0.031481

0.69491E-04 0.031481 0.10495E-03 0.031481

0.22637E-03 0.031481 0.32485E-03 0.031481

0.64444E-03 0.031481 0.89336E-03 0.031481

0.16722E-02 0.031481 0.22617E-02 0.031481

0.40582E-02 0.031481 0.53898E-02 0.031481

0.93687E-02 0.031481 0.12271E-01 0.031481

0.20814E-01 0.031481 0.26968E-01 0.031481

0.44863E-01 0.031481 0.57624E-01 0.031481

0.94362E-01 0.031481 0.12034E+00 0.031481

0.19446E+00 0.031481 0.24645E+00 0.031481

0.39360E+00 0.031481 0.49603E+00 0.031481

0.78339E+00 0.031481 0.98173E+00 0.031481

1.5327 0.031481 1.9092 0.031481

2.9424 0.031481 3.6394 0.031481

5.5228 0.031481 6.7728 0.031481

10.083 0.031481 12.233 0.031481

17.782 0.031481 21.293 0.031481 0.031481

30.068 0.031481 35.439 0.031481 41.529 0.031481

48.372 0.031633 55.991 0.031972 64.394 0.032508

73.570 0.033258 83.491 0.034240 94.107 0.035475

105.35 0.036988 117.13 0.038812 129.35 0.040981

0.65107E-07 0.031481

0.14382E-05 0.031481

0.10136E-04 0.031481

0.44974E-04 0.031481

0.15544E-03 0.031481

0.46016E-03 0.031481

0.12272E-02 0.031481

0.30388E-02 0.031481

0.71224E-02 0.031481

0.16010E-01 0.031481

0.34833E-01 0.031481

0.73828E-01 0.031481

0.15313E+00 0.031481

0.31175E+00 0.031481

0.62395E+00 0.031481

0.12279E+01 0.031481

2.3729 0.031481

4.4897 0.031481

8.2783 0.031481

14.781 0.031481

25.369

Table A.I: Tabular Form of f, vs. Ret
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Rt

141.89

180.31

/.
0.043536

0.054020

Rt

154.64
Rt

167.49 0.049999

193.02 0.058652 205.53 0.063969

217.78 0.070048 229.74 0.076975 241.37 0.084840

252.68 0.093735 263.67 0.103757 274.37 0.115004

284.80 0.127571 295.00 0.141547 305.00 0.157011

314.84 0.174022 324.53 0.192609 334.12 0.212758

343.62 0.234389 353.05 0.257334 362.44 0.281294

371.81 0.305798 381.20 0.330134 390.66 0.353272

399.79 0.372845 408.68 0.387696 417.44 0.397520

0.406392 434.79426.14 0.414960 443.39 0.423240

451.95 0.431248 460.46 0.439000 468.93 0.446509

477.36 0.453786 485.76 0.460845 494.12 0.467695

502.46 0.474347 510.76 0.480810 519.04 0.487093

0.499150527.29 535.51 543.710.493203 0.504939

551.88 0.510578 560.03 0.516072 568.17 0.521429

576.28 0.526653 584.37 0.531750 592.44 0.536724

600.50 0.541582 608.53 0.546326 616.55 0.550962

624.56 0.555493 632.55 0.559923 640.52 0.564256

648.48 0.568495 656.42 0.572644 664.35 0.576705

672.27 0.580682 680.18 0.584577 688.07 0.588393

695.95 0.592133 703.82 0.595800 711.68 0.599394

719.52 0.602920 727.36 0.606378 735.18 0.609772

0.613102

0.622733

0.631860

0.640525

0.648764

0.656610

743.00

766.39

789.69

812.92

750.80

774.16

797.44

820.64

843.77

866.84

889.84

912.79

836.07

859.16

0.616371

0.625829

0.634798

0.643317

0.651422

0.659144

0.666513

0.673553

882.18

905.14

0.664094

758.60

781.93

805.18

828.36

851.47

874.51

897.50

920.420.671241

0.619581

0.628871

0.637686

0.646063

0.654037

0.661638

0.668895

0.675831

928.05 0.678076 935.68 0.680288 943.29 0.682469

950.91 0.684619 958.51 0.686739 966.11 0.688830

973.71 0.690892 981.30 0.692925 988.89 0.694931

996.47 0.696910 1004.04 0.698863 1011.61 0.700790

1019.18 0.702692 1026.74 0.704569 1034.29 0.706422

1041.84 0.708251 1049.39 0.710057 1056.93

0.713601

0.718755

1064.47

1087.05

1109.60

1132.11

1072.00 1079.53

1102.09

1124.61

1147.10

1094.57

0.715340

0.720431

0.725340

0.730078

1117.11

1139.61

0.723723

0.728517

0.711840

0.717058

0.722087

0.726938

0.731621

Table A.2: Tabular Form of f_, vs. Ret (Continued)
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Rt

1154.59

1177.03

1199.44

1221.82

1244.17

1266.49

/.
0.733147

0.737621

0.741947

0.746134

0.750188

0.754116

Rt

1162.07

1184.51

1206.91

1229.27

1251.61

1273.92

/.
0.734655

0.739079

0.743358

0.747499

0.751511

0.755399

Rt

1169.56

1191.98

1214.37

1236.72

1259.05

1281.36

f.
0.736146

0.740521

0.744753

0.748851

0.752820

0.756668

1288.78 0.757925 1296.21 0.759169 1303.63 0.760401

1311.05 0.761620 1318.46 0.762827 1325.88 0.764023

1333.29 0.765206 1340.69 0.766379 1348.10 0.767540

0.769829

0.773182

0.776442

0.779613

1355.50 0.768690

0.772074

1362.90

1385.08

1407.24

1429.37

1370.30

1392.47

1414.62

1436.74

0.775365

0.778566

0.781680

1377.69

1399.85

1422.00

1444.12

0.770957

0.774278

0.777509

0.780651

1451.48 0.782700 1458.85 0.783711

1466.21 0.784713 1473.57 0.785706 1480.93 0.786690

1488.29 0.787666 1495.64 0.788634 1503.00 0.789593

1510.35 0.790544 1517.69 0.791487 1525.04 0.792422

1532.38 0.793350 1539.72 0.794269

1554.40 0.796086 1561.73 0.796983

0.799630

0.802215

0.804738

0.807203

0.809611

0.811965

0.798755

0.801360

0.803903

1583.72

1605.70

1627.65

1649.59

1671.51

1693.41

1715.30

0.806387

1547.06 0.795181

1569.06 0.797872

1591.05

1613.02

1634.96

1656.90

1678.81

1700.71

0.808814

0.811186

1576.39

1598.37

1620.33

1642.28

1664.20

1686.11

1708.00 0.813505 0.814267

0.800499

0.803062

0.805566

0.808012

0.810402

0.812738

0.8150231722.59

1729.88 0.815773 1737.17 0.816518 1744.46 0.817257

1751.74 0.817992 1759.02 0.818720 1766.31 0.819444

1773.59 0.820163 1780.86 0.820876 1788.14 0.821584

1795.42 0.822288 1802.69 0.822986 1809.96 0.823680

1824.50 0.825052

0.827076

0.829059

1817.23

1839.03

1860.82

0.824368

0.826406

0.828402

1831.77

1853.56

1875.33

1846.29

1868.08

0.825731

0.827742

0.829711

1882.59 0.830359 1889.84 0.831002 1897.10 0.831641

1904.35 0.832276 1911.60 0.832907 1918.85 0.833534

1926.10 0.834156 1933.34 0.834775 1940.58 0.835389

1947.83 0.836000 1955.07 0.836607 1962.31 0.837209

1969.55 0.837808 1976.78 0.838403 1984.02 0.838995

1991.25 0.839583 1998.49 0.840167 2005.72

2012.95 2020.18 0.8418970.841324 2027.41

0.840747

0.842467

Table A.3: Tabular Form of f_ vs. Ret (Continued)
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Rt

2034.63

2056.30

2077.96

2099.61

2121.24

2142.87

2164.48

2186.09

2207.68

2229.26

2250.83

2272.39

2293.94

2315.48

2337.02

2358.54

2380.05

2401.55

2423.05

2444.53

2466.01

2487.48

2508.94

2530.39

2551.83

2573.26

2594.68

2616.10

2637.51

2658.91

fe Rt
0.843033 2041.86

0.844711 2063.52

0.846359 2085.18

0.847977 2106.82

0.849567 2128.45

0.851129 2150.07

0.852665 2171.68

0.854174 2193.28

0.855658 2214.87

0.857117 2236.45

0.858552 2258.02

0.859964 2279.58

0.861353 2301.12

0.862720 2322.66

0.864065 2344.19

0.865389 2365.71

0.866693 2387.22

0.867976 2408.72

0.869240 2430.21

0.870485 2451.69

0.871712 2473.17

0.872921 2494.63

0.874111 2516.09

0.875285 2537.53

0.876442 2558.97

0.877582 2580.40

0.878707 2601.82

0.879815

0.880909

0.843596

0.845263

0.846901

0.848510

0.850091

0.851644

0.853171

0.854672

0.856147

0.857598

0.859025

0.860429

0.861811

0.863170

0.864509

0.865826

0.867123

0.868400

0.869657

0.870896

0.872117

0.873319

0.874505

0.875673

0.876824

0.877959

Rt

2049.08

2070.74

2092.39

2114.03

2135.66

2157.28

2178.89

2200.48

2222.07

2243.64

2265.21

2286.76

2308.31

2329.84

2351.37

2372.88

2394.39

0.844155

0.845813

0.847441

0.849040

0.850612

0.852156

0.853674

0.855166

0.856633

0.858077

0.859496

0.860892

0.862267

0.863619

0.864950

0.866260

0.867550

2415.88 0.868821

2437.37 0.870072

2458.85

2480.32

2501.78

2523.24

2544.68

2566.12

2587.54

0.871305

0.872520

0.873716

0.874896

0.876058

0.877204

0.878334

0.879078 2608.96 0.879448

2623.24 0.880181 2630.37 0.880546

2644.64 0.881270 2651.78 0.881629

0.881987 2666.04 0.882343 2673.17 0.882698

2680.30 0.883051 2687.43 0.883402 2694.56 0.883752

2701.69 0.884100 2708.82 0.884447 2715.94 0.884792

2723.07 0.885136 2730.19 0.885478 2737.31 0.885819

2758.68

2780.04

2801.39

2822.73

2844.06

2865.39

2744.44

2765.80

2787.15

0.886158 2751.56

0.887166 2772.92

0.888162 2794.27

0.889144 2815.61

0.890114 2836.95

0.891072 2858.28

0.886495

0.887499

0.888491

0.889469

0.890435

0.891388

0.8923300.892018 2879.61

2808.50

2829.84

2851.17

2872.50 2886.71

0.886832

0.887831

0.888818

0.889792

0.890754

0.891704

0.892642

Table A.4: Tabular Form of f_, vs. Ret (Continued)
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2893.82 0.892952 2900.92 0.893260 2908.03 0.893568

2915.13 0.893874 2922.23 0.894179 2929.33 0.894483

2936.43 0.894785 2943.53 0.895086 2950.63 0.895386

2957.73 0.895685 2964.83 0.895983 2971.93 0.896279

2979.02 0.896574 2986.12 0.896868 2993.21 0.897161

3000.31 0.897453 3007.40 0.897744 3014.49 0.898033
3021.59

3042.86

0.898321

0.899179

0.9000273064.12

3028.68

3049.95

3071.21

0.898608

0.899463

0.900308

3035.77

3057.04

0.898894

0.899746

3078.30 0.900587

3085.38 0.900865 3092.47 0.901143 3099.55 0.901419

3106.63 0.901694 3113.72 0.901968 3120.80 0.902241

3127.88 0.902513 3134.96 0.902784 3142.04 0.903054

3149.12 0.903323 3156.20 0.903591 3163.28 0.903858

3170.35 0.904124 3177.43 0.904388 3184.51 0.904652

3191.58 0.904915 3198.66 0.905177 3205.73 0.905438
3212.80

3234.02

3255.23

3276.43

3297.63

0.905698

0.906473

0.907239

0.907997

0.908746

0.909488

0.910222

0.910948

0.911666

0.912377

0.913081

0.913777

0.914467

0.915149

0.915825

0.916494

3318.82

3340.01

3361.19

3382.36

3219.88

3241.09

3262.30

3283.50

3304.69

3325.88

3347.07

3368.25

3389.42

3410.59

3431.75

3452.91

3474.06

3495.20

3516.34

3537.48

3403.53

3424.70

3445.86

0.905957

0.906729

0.907492

0.908247

0.908994

0.909733

0.910464

0.911188

0.911904

0.912612

0.913314

0.914008

0.914695

0.915375

0.916049

0.916715

3467.01

3488.16

3226.95

3248.16

3269.36

3290.56

3311.76

3332.95

3354.13

3375.31

3396.48

3417.64

3438.80

3459.96

3481.11

3502.25

3523.39

3544.52

3509.30

3530.44

0.906216

0.906984

0.907745

0.908497

0.909241

0.909978

0.910706

0.911427

0.912141

0.912847

0.913546

0.914238

0.914923

0.915600

0.916272

0.916936

3551.57 0.917156 3558.61 0.917376 3565.65 0.917594

3572.69 0.917812 3579.73 0.918029 3586.77 0.918246

3593.81 0.918462 3600.85 0.918677 3607.89 0.918891

0.919105 3621.97 3629.013614.93 0.919318 0.919530

3636.04 0.919742 3643.08 0.919953 3650.11 0.920163

3657.15 0.920373 3664.18 0.920582 3671.22 0.920790

3678.25 0.920998 3685.28 0.921205 3692.31 0.921411

3699.34 0.921617 3706.38 0.921822 3713.41 0.922026

3720.44 3734.490.9224333727.460.922230 0.922636

Table A.5: Tabular Form of f_ vs. Ret (Continued)
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Rt

3741.52

3762.60

3783.68

f.
0.922838

0.923440

0.924036

Rt

3748.55

3769.63

3790.70

f.
0.923039

0.923639

0.924234

Rt

3755.58

3776.65

3797.73

f.
0.923239

0.923838

0.924430

3804.75 0.924627 3811.77 0.924823 3818.80 0.925018

3825.82 0.925212 3832.84 0.925406 3839.86 0.925600

3846.88 0.925793 3853.90 0.925985 3860.92 0.926177

3867.94 0.926368 3874.96 0.926558 3881.97 0.926748

3888.99 0.926938 3896.01 0.927127 3903.02 0.927315

3910.04 0.927503 3917.05 0.927690 3924.07 0.927877

3931.08 0.928063 3938.10 0.928248 3945.11 0.928433

3952.12 0.928618 3959.13 0.928802 3966.15 0.928985

3973.16 0.929168 3980.17 0.929351 3987.18 0.929532

3994.19 0.929714 4001.20 0.929894 4008.20 0.930075

4015.21 0.930254 4022.22 0.930434 4029.23 0.930612

4036.23 0.930791 4043.24 0.930968 4050.25 0.931146

4057.25 0.931322 4064.26 0.931499 4071.26 0.931674

4078.26 0.931849 4085.27 0.932024 4092.27 0.932198

4099.27 0.932372 4106.27 0.932545 4113.28 0.932718

4120.28 0.932891 4127.28 0.933062 4134.28 0.933234

4141.28 0.933405 4148.27 0.933575 4155.27 0.933745

4162.27 0.933914 4169.27 0.934084 4176.27 0.934252

4183.26 0.934420 4190.26 0.934588 4197.25 0.934755

4204.25 0.934922 4211.24 0.935088 4218.24 0.935254

4225.23 0.935419 4232.23 0.935584 4239.22 0.935749

4246.21 0.935913 4253.20 0.936076 4260.20 0.936239

4267.19 0.936402 4274.18 0.936564 4281.17 0.936726

4288.16 0.936888 4295.15 0.937049 4302.14 0.937209

4309.12 0.937369 4316.11 0.937529 4323.10 0.937688

4330.09 0.937847 4337.07 0.938006 4344.06 0.938164

4351.05 0.938322 4358.03 0.938479 4365.02 0.938636

4372.00 0.938792 4378.99 0.938948 4385.97 0.939104

4392.95 0.939259 4399.94 0.939414 4406.92 0.939568

4413.90 0.939722 4420.88 0.939876 4427.86 0.940029

4434.84 0.940182 4441.82 0.940334 4448.80 0.940486

4455.78 0.940638 4462.76 0.940789 4469.74 0.940940

4476.72 0.941091 4483.70 0.941241 4490.67 0.941391

4497.65 0.941540 4504.63 0.941689 4511.60 0.941838

4518.58 0.941986 4525.55 0.942134 4532.53 0.942281

4539.50 0.942428 4546.48 0.942575 4553.45 0.942722

4560.42 0.942868 4567.40 0.943013 4574.37 0.943159

Table A.6: Tabular Form of f_, vs. Ret (Continued)
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Rt

4581.34

4602.25

4623.16

4644.07

4664.97

4685.87

4706.77

4727.66

f.
0.943304

0.943736

0.944166

0.944593

0.945016

0.945436

0.945854

0.946268

Rt

4588.31

4609.22

4630.13

4651.04

4671.94

4692.84

4713.73

4734.62

f.
0.943448

0.943880

0.944309

0.944734

0.945156

0.945576

0.945992

0.946405

Rt

4595.28

4616.19

4637.10

4658.00

4678.90

4699.80

4720.69

4741.58

4748.55 0.946679 4755.51 0.946816 4762.47

4769.43 0.947088 4776.39 0.947223 4783.35

4790.31 0.947493 4797.27 0.947628 4804.23

4818.150.9478964811.19

f.
0.943593

0.944023

0.944451

0.944875

0.945296

0.945715

0.946130

0.946542

0.946952

0.947358

0.947762

0.948030 4825.11 0.948163

4832.06 0.948296 4839.02 0.948429 4845.98 0.948561

4852.94 0.948693 4859.89 0.948825 4866.85 0.948956

4873.80 0.949087 4880.76 0.949218 4887.71 0.949349

4894.67 0.949479 4901.62 0.949609 4908.58 0.949739

4915.53 0.949868 4922.48 0.949997 4929.44 0.950126

4936.39 0.950254 4943.34 0.950383 4950.29 0.950511

4957.24 0.950638 4964.19 0.950766 4971.14 0.950893

4978.09 0.951019 4985.04 0.951146 4991.99 0.951272
4998.94 5005.89

5026.73

0.951398

0.951774

O.951524

0.9518995019.79

5012.84

5033.68

0.951649

0.952023

5040.63 0.952147 5047.58 0.952271 5054.52 0.952395

5061.47 0.952518 5068.41 0.952642 5075.36 0.952764

5082.30 0.952887 5089.25 0.953009 5096.19 0.953131

0.953253

0.953617

0.953978

0.954337

0.954694

5103.14

5123.96

0.953375

0.953738

0.954098

0.954456

0.954812

0.955166

0.955517

0.955867

0.956214

0.956558

5144.79

5165.61

5186.43

5207.25

5228.07

5248.88

5269.68

5290.49

0.955048

0.955401

5110.08 5117.02

5137.85

5158.67

5179.49

5200.31

5221.13

5241.94

5262.75

5283.56

5130.91

5151.73

5172.55

5193.37

5214.19

5235.00

5255.81

5276.62

5297.42

0.955750

0.956098

0.956444

0.953496

0.953858

0.954218

0.954575

0.954931

0.955283

0.955634

0.955982

0.956329

5304.36 0.956673

5311.29 0.956787 5318.23 0.956901 5325.16 0.957015

5332.09 0.957128 5339.02 0.957241 5345.96 0.957354

5352.89 0.957467 5359.82 0.957580 5366.75 0.957692

5373.68 0.957804 5380.61 0.957916 5387.54 0.958027

5394.47 0.958139 0.958250 5408.335401.40 0.958361

Table A.7: Tabular Form of f. vs. Ret (Continued)
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Rt

5415.26

5436.05

5456.83

5477.61

5498.38

5519.16

5539.93

5560.70

5581.46

5602.23

5622.99

5643.75

5664.50

5685.25

5706.00

5726.75

5747.50

5768.24

5788.98

]. Rt

0.958471 5422.19

0.958802 5442.97

0.959131 5463.75

0.959457 5484.53

0.959782 5505.31

0.960105 5526.08

0.960425 5546.85

0.960744 5567.62

0.961061 5588.39

0.961376 5609.15

0.961689 5629.91

0.962000 5650.66

0.962310 5671.42

0.962617 5692.17

0.962923 5712.92

0.963227 5733.67

0.963529 5754.41

0.963830 5775.15

0.964129 5795.89

f. Rt

0.958582 5429.12

0.958912 5449.90

0.959240 5470.68

0.959566 5491.46

0.959890 5512.23

0.960212 5533.01

0.960532 5553.78

0.960850 5574.54

0.961166 5595.31

0.961481 5616.07

0.961793 5636.83

0.962104 5657.58

0.962412 5678.34

0.962719 5699.09

0.963025 5719.84

0.963328 5740.58

0.963630 5761.33

0.963930 5782.07

0.964228 5802.81

/.
0.958692

0.959021

0.959349

0.959674

0.959997

0.960319

0.960638

0.960956

0.961271

0.961585

0.961897

0.962207

0.962515

0.962821

0.963126

0.963429

0.963730

0.964029

0.964327

5809.72 0.964426 5816.63 0.964524 5823.54 0.964623

5830.45 0.964721 5837.36 0.964819 5844.28 0.964917

5851.19 0.965015 5858.10 0.965112 5865.01 0.965209

0.965404 5885.74

0.965693 5906.46

0.965307 5878.83

0.965597 5899.55

0.965886 5920.28

0.966173 5941.00

0.966458 5961.72

5871.92

5892.64

5913.37

5934.O9

5954.81

5975.53

5996.25

0.966742 5982.44

0.967024 6003.15

6016.96 0.967305 6023.87

6037.67 0.967584 6044.58

0.965981 5927.19

0.966268 5947.91

0.966553 5968.63

0.966836 5989.34

0.967118 6010.06

0.967398

0.965500

0.965790

0.966077

0.966363

0.966647

0.966930

0.967211

6030.77 0.967491

6051.48 0.9677690.967677

6058.38 0.967861 6065.28 0.967954 6072.19 0.968046

6079.09 0.968137 6085.99 0.968229 6092.89 0.968321

0.968412 6106.69 0.968503 6113.60

0.968685

6O99.79

6120.50
0.968594

0.9688666127.40 0.968776 6134.30

6141.20 0.968957 6148.10 0.969047 6155.00 0.969137

6161.89 0.969227 6168.79 0.969316 6175.69 0.969406

6182.59 0.969495 6189.49 0.969584 6196.39 0.969673

0.969851 6217.086203.28

6223.98

0.969762 6210.18

0.970028 6230.87 0.970116 6237.77

0.969940

0.970204

Table A.8: Tabular Form of f_ vs. Ret (Continued)
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Rt

6244.67

6265.35

6286.04

6306.72

6327.40

6348.08

6368.76

6389.43

6410.11

6430.78

6451.45

6472.11

f.
0.970292

0.970555

0.970816

0.971076

0.971335

0.971592

0.971848

0.972103

0.972356

0.972608

0.972859

0.973108

Rt

6251.56

6272.25

6292.93

6313.61

6334.29

6354.97

6375.65

6396.32

6417.00

6437.67

6458.33

6479.00

f.
0.970380

0.970642

0.970903

0.971163

0.971421

0.971678

0.971933

0.972187

0.972440

0.972692

0.972942

0.973191

R_

6258.46

6279.14

6299.83

6320.51

6341.19

6361.87

6382.54

6403.21

6423.89

6444.56

6465.22

6485.89

f.
0.970468

0.970729

0.970990

0.971249

0.971507

0.971763

0.972018

0.972272

0.972524

0.972775

0.973025

6492.78 0.973356 6499.67 0.973438 6506.55

6513.44 0.973602 6520.33 0.973684 6527.22 0.973766

6534.10 0.973848 6540.99 0.973929 6547.88 0.974011

0.974092

0.974335

0.974577

0.974817

0.975056

0.975294

0.975531

0.975766

0.976001

0.976234

6554.76

6575.42
0.974173

0.974416

0.974657

0.974897

0.975136

0.975373

0.975610

0.975845

0.976079

0.976311

0.976543

0.976773

6596.07

6616.73

6637.38

6658.03

6678.68

6699.33

6719.97

6740.61

6761.26

6781.89

0.976466

6561.65

6582.30

6568.53

6589.19

6609.84

6630.50

6651.15

6671.80

6692.44

6713.09

6733.73

6754.37

6775.02

6602.96

6623.61

6644.26

6664.91

6685.56

6706.21

6726.85

6747.49

6768.14

6788.770.976697

0.973273

0.973520

0.974254

0.974496

0.974737

0.974977

0.975215

0.975452

0.975688

0.975923

0.976156

0.976389

0.976620

6795.65 0.976850

6802.53 0.976926 6809.41 0.977003 6816.29 0.977079

6823.17 0.977155 6830.05 0.977231 6836.93 0.977307

6843.80 0.977382 6850.68 0.977458 6857.56 0.977533

6864.44 0.977609 6871.31 0.977684 6878.19 0.977759

6885.07 0.977834 6891.94 0.977909 6898.82

6919.45

6940.08

6960.70

6905.70 6912.57

6933.20

6953.83

6974.45

6995.08

6926.33

6946.95

6967.58

6988.20

7008.82

0.978058

0.978281

0.978502

0.978132

0.978355

0.978576

0.978797

0.979016

0.978723

0.978943

0.979161

6981.33

7001.95

0.977983

0.978207

0.978429

0.978650

0.978870

0.979089

7015.70 0.979234 7022.57 0.979306

7029.44 0.979379 7036.32 0.979451 7043.19 0.979523

7050.06 0.979595 7056.93 0.979667 7063.81 0.979739

7070.68 0.979811 7077.55 0.979882 7084.42 0.979954

Table A.9: Tabular Form of f_, vs. Ret (Continued)
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R, I. R, f. R, f.
7091.30 0.980025 7098.17 0.980096 7105.04 0.980167

7111.91

7132.52

0.980238

0.980450

7118.78

7139.39

0.980309

0.980521

7125.65

7146.26

0.980380

0.980591

7153.13 0.980662 7160.00 0.980732 7166.87 0.980802

7173.74 0.980872 7180.61 0.980942 7187.48 0.981011

7194.35 0.981081 7201.22 0.981151 7208.09 0.981220

0.981289

0.981496

0.981358

0.981565

7214.96

7235.57

7228.70

7249.30

7221.83

7242.43

0.981427

0.981634

0.9818407256.17 0.981703 7263.04 0.981771 7269.91

7276.77 0.981908 7283.64 0.981976 7290.51 0.982044

7297.38 0.982112 7304.24 0.982180 7311.11 0.982248

7324.84

7345.44

7317.98

7338.58

7331.710.982315

0.982518

0.982383

0.982585

0.982450

7352.31 0.982652

7359.17 0.982719 7366.04 0.982786 7372.91 0.982853

7379.77 0.982919 7386.64 0.982986 7393.50 0.983052

7400.37 0.983119 7407.23 0.983185 7414.10 0.983251

7420.96 0.983317 7427.83 0.983383 7434.69 0.983449

7441.55 0.983515 7448.42 0.983580 7455.28 0.983646

7462.15 0.983711 7469.01 0.983776 7475.87

0.983907 7489.60 0.9839727482.74 7496.46

0.983842

0.984037

7503.33 0.984102 7510.19 0.984166 7517.05 0.984231

7523.91 0.984295 7530.78 0.984360 7537.64 0.984424

7544.50 0.984488 7551.36 0.984552 7558.23 0.984616

7565.09 0.984680 7571.95 0.984744 7578.81 0.984808

7585.67 0.984871 7592.53 0.984935 7599.40 0.984998

7606.26 0.985062 7613.12 0.985125 7619.98 0.985188

7626.84 0.985251 7633.70 0.985314 7640.56 0.985377

7647.42 0.985439 7654.28 0.985502 7661.14 0.985565

7668.00 0.985627 7674.86 0.985689 7681.72 0.985752

7688.58 0.985814 7695.44 0.985876

7709.16

7729.74

0.986061

0.986246

0.986430

0.986613

0.986795

7750.32

0.986000

0.986185

7716.02

7736.60

7757.17

7702.30

7722.88

7743.46

7764.03

7784.61

7805.18

7777.75

7798.32

0.986369

0.986552

0.986734

7770.89

7791.47

0.985938

0.986123

0.986307

0.986491

0.986674

0.986855

7812.04 0.986916 7818.90 0.986976 7825.76 0.987036

7832.61 0.987097 7839.47 0.987157 7846.33 0.987217

7853.19 0.987277 7860.04 0.987336 7866.90 0.987396

7873.76 0.987456 7880.61 0.987515 7887.47 0.987575

7894.33 0.987634 7901.18 0.987693 7908.04 0.987752

7914.90 0.987811 7921.75 0.987870 7928.61 0.987929

Table A.10: Tabular Form of fu vs. Ret (Continued)
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Rt

7935.47

7956.03

7976.60

7997.17

8017.73

8038.30

8058.86

8079.42

8099.99

8120.55

8141.11

8161.67

8182.23

8202.79

8223.35

/.
0.987988

0.988164

0.988339

0.988513

0.988686

0.988859

0.989031

0.989202

0.989372

0.989541

0.989710

0.989878

0.990045

0.990212

0.990377

Rt

7942.32

7962.89

7983.46

8004.02

8024.59

8045.15

8065.71

8086.28

8106.84

8127.40

8147.96

8168.52

8189.08

8209.64

0.988222

0.988397

0.988571

0.988744

0.988916

0.989088

0.989259

0.989429

0.989598

0.989766

0.989934

0.990101

0.990267

Rt

7949.18

7969.74

7990.31

8010.88

8031.44

8052.01

8072.57

8093.13

8113.69

8134.26

8154.82

8175.38

8195.94

8216.49

/.
0.988105

0.988280

0.988455

0.988629

0.988801

0.988974

0.989145

0.989315

0.989485

0.989654

0.989822

0.989990

0.990156

0.990322

8230.20 0.990432 8237.05 0.990487

8243.90 0.990542 8250.76 0.990597 8257.61 0.990652

8264.46 0.990706 8271.31 0.990761 8278.17 0.990815

8285.02 0.990870 8291.87 0.990924 8298.72 0.990978

0.9910868312.430.9910328305.58 8319.28 0.991140

8326.13 0.991194 8332.98 0.991248 8339.83 0.991302

8346.69 0.991355 8353.54 0.991409 8360.39 0.991462

8367.24 0.991516 8374.09 0.991569 8380.94 0.991622

0.991729

0.991887

8401.50

8422.05

0.991676 8394.65

8415.20

8387.79

8408.35 0.991835

0.991782

0.991940

8428.90 0.991993 8435.75 0.992045 8442.60 0.992098

8449.45 0.992150 8456.30 0.992203 8463.16 0.992255

8470.01 0.992307 8476.86 0.992359 8483.71 0.992411

8490.56 0.992463 8497.41 0.992515 8504.26 0.992567

8511.11 0.992619 8517.96 0.992670 8524.81 0.992722

8531.66 0.992774 8538.51 0.992825 8545.36 0.992876

8559.068552.21 0.992928 0.992979 8565.91 0.993030

8572.76 0.993081 8579.61 0.993132 8586.46 0.993183

8593.31 0.993234 8600.16 0.993284 8607.01 0.993335

8613.86 0.993385 8620.71 0.993436 8627.56 0.993486

8634.41 0.993537 8641.26 0.993587 8648.11 0.993637

8654.96 0.993687 8661.81 0.993737 8668.66 0.993787

8675.51 0.993837 8682.36 0.993887 8689.21 0.993937

8696.06 0.993986 8702.91 0.994036 8709.76

0.994184

0.994332

0.994479

8716.61

8737.15

0.994135

0.994283

0.9944308757.70

8730.31

8750.85

8771.40

8723.46

8744.00

8764.55

0.994085

0.994234

0.994381

0.994528

Table A.11: Tabular Form of f. vs. Ret (Continued)
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Rt

8778.25 0.994576

Rt

8785.10 0.994625
Rt y.

8791.95 0.994674

8798.80 0.994722 8805.65 0.994771 8812.50 0.994819

8819.35 0.994867 8826.19 0.994916 8833.04 0.994964

8839.89 0.995012 8846.74 0.995060 8853.59 0.995108

8860.44 0.995156 8867.29 0.995204 8874.14 0.995251

8880.99

8901.53

8922.08

8942.63

8963.17

8983.72

9004.27

9024.81

9045.36

9065.91

9086.46

9107.00

9127.55

9148.10

9168.64

9189.19

9209.74

9230.29

9250.83

9271.38

9291.93

9312.48

9333.03

9353.58

9374.13

9394.68

9415.23

9435.78

9456.33

0.995299

0.995442

0.995584

0.995725

0.995865

0.996005

0.996145

0.996283

0.996422

0.996559

0.996696

0.996832

0.996968

0.997103

0.997237

0.997371

0.997504

0.997636

0.997768

0.997899

0.998030

0.998160

0.998290

0.998418

0.998547

0.998674

0.998802

0.998928

0.999054

0.999179

0.999304

0.999428

0.999552

0.999675

9476.88

9497.43

8887.84

8908.38

8928.93

8949.48

8970.02

8990.57

9011.12

9031.66

9052.21

9072.76

9093.30

9113.85

9134.40

9154.95

9175.49

9196.04

9216.59

9237.14

9257.68

9278.23

9298.78

9319.33

9339.88

9360.43

9380.98

9401.53

9422.08

9442.63

9463.18

9483.73

9504.28

9524.83

9545.39

9565.94

9517.98

0.995347

0.995489

0.995631

0.995772

0.995912

0.996052

0.996191

0.996330

0.996467

0.996605

0.996741

0.996877

0.997013

0.997147

0.997282

0.997415

0.997548

0.997680

0.997812

0.997943

0.998073

0.998203

0.998333

0.998461

0.998589

0.998717

0.998844

0.998970

0.999096

0.999221

0.999345

0.999469

0.999593

0.999716

9538.54

8894.68

8915.23

8935.78

8956.33

8976.87

8997.42

9017.97

9038.51

9059.06

9079.61

9100.15

9120.70

9141.25

9161.79

9182.34

9202.89

9223.44

9243.99

9264.53

9285.08

9305.63

9326.18

9346.73

9367.28

9387.83

9408.38

9428.93

9449.48

9470.03

9490.58

9511.13

9531.68

9552.24

9572.799559.09

0.995394

0.995536

0.995678

0.995819

0.995959

0.996098

0.996237

0.996376

0.996513

0.996650

0.996787

0.996922

0.997058

0.997192

0.997326

0.997459

0.997592

0.997724

0.997856

0.997987

0.998117

0.998247

0.998376

0.998504

0.998632

0.998759

0.998886

0.999012

0.999138

0.999263

0.999387

0.999511

0.999634

0.999756

9579.64 0.999797 9586.49 0.999838 9593.34 0.999879

9600.20 0.999919 9613.90 1.000000 c_ 1.000000

Table A.12: Tabular Form of fu vs. Ret (Continued)
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Appendix B

Discretized Equations

The following are the discretized equations of motion for equations 4.1 - 4.9; the bound-

ary conditions given in Table 2.1, Table 2.3, and Table 2.4; and the additional equations

for friction velocity, T_,_l, and Q_oau required when integrating only to the wall layer.

These equations are discretized by Keller's Box Scheme as described in Chapter Four

and are given in nondimensional form, neglecting the- and" for simplicity. The sub-

script j refers to grid locations perpendicular to the plate, and the superscript n refers

to spacing in the direction of the flow.

B.1 Discretized Boundary Conditions at the Wall and in the Wall

Layer

The wall function boundary conditions employed in the code include modifcations for

adiabatic, compressible flow.

kwall = 0 corresponds to wall function boundary conditions. These boundary condi-

tions are only used for adiabatic boundary layers.

kwall = 1 corresponds to wall surface boundary conditions

kiso = 0 corresponds to adiabatic surface boundary conditions

kiso = 1 corresponds to isothermal surface boundary conditions

kvvel = 0 corresponds to v[* = 0 in the wall layer

kvvel = 1 corresponds to v_ satisfying the continuity equation in the wall layer, for

incompressible boundary layers only.

For all independent variables, uT, w_' is defined as the value of the variable w at the jth

node perpendicular to the plate and the n th node parallel the plate.
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Boundary Condition on u at j = 1

where

BCuwall }'1

-(1-kwall)(_---_sin(Aluc))

- (kwaU)(o) = o

u_ = In ine_o
T"It

\ t_wall wall

A1 = PrT T,_ u

Boundary Condition on v at j = 1

+ Bu'¢)

n

BCvwall = v t

- (1 - kvvel)(O)

n _ un-1
_ (kvvel)YlU'_U"___ =

u'¢ Az"

kvvel = 1 is valid only for incompressible boundary layers

Boundary Condition on e, at j = 1

n

BCewall = e,,x
1

-(1-kwall)((u'_)31 (--_---I_
\ _Yt / \T:_zl/

- (k,_an) _Ti(h) =o
2 p,_T2 Redo

Boundary Condition on q at j = 1

BCqwall = q_
1

- (1-kwall)( u_ _ ( T_ _
1 T n\(C.)_/ \ wall)

- (k_oan)(o)=o

Boundary Condition on T at j = 1

BCTwall = (kiso) (Tnau - T_ - 1prTu_2(7 -1)M 2)

[2wall
+ (1 - kiso)(O_tt +

Re_oML(_- t)P_

× .(c'_ + PrTu_h'_( 7 - 1)M£)) 0

(B._)

(B.2)

(B.3)

(B.4)

(13.5)
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B.2 Discretized Boundary Conditions at the Edge of the Computa-

tional Domain

kgrad = 0 corresponds to Dirichlet Boundary Condition

kgrad = 1 corresponds to Neuman Boundary Condition

Boundary Condition on u at Edge of Computational Domain

BCuedge = U_l - U_ = 0

Boundary Condition on % at Edge of Computational Domain

BCeedge = (1 - kgrad)(%_, - %e) n + (kgrad)(a_l - O) = 0

Boundary Condition on q at Edge of Computational Domain

BCqedge = (1 - kgrad)(q_ - qe)" + (kgrad)(b_ - O) = 0

Boundary Condition on T at Edge of Computational Domain

BCTedge = (1 - kgrad)(T_ - Te)" + (kgrad)(cy, - O) = 0

(B.6)

(B.7)

(B.8)

(B.9)

B.3 Discretized Additional Equations Required for u_,T,,_u and Q_u

Additional Equation for u_

/_,_., h,\
/_wall_T1 1 |

Eq_._ : (1- k_u) _"_- V _ )

/T. "" h" \
['_ wallPwall 1

+ (kw_u) u:- v _):0

Additional Equation for T_u

EQNT_a = (kiso) T_ u _ ]

+ (1-kiso)(T:au-T_-_Prru?2(7-1) M2)

Additional Equation for Q_u

BQNQw_a = (kiso) Q=au + 1)Pr(1)

( O:_u) =°+ (1 - kiso) Q_u + .3----:-

T_lz is the specified wall temperature for an isothermal wall

Q_au is the specified wall heat flux for an adiabatic wall

=0

(B.10)

(B.11)

(B.12)
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B.4 Discretized Equations of Motion

Definitions

n Ayj (B.13)
aj - Az n

Redo = p_ Moo __o
#_ (B.14)

, (1.0 + TreI _ (B.15)_,j = (T?)_ \ _ + Tros]

where

TSS
gre! T* (B.16)

oo

2 n2

(Mhf2 - e.OML(q))
T? (B.17)

n (q?)'
Rtj = Re_op2T: T?p2e,,_(1 + Ck( Mt2)12) (B.lS)

n n n n 4

,, p_T_ C.fmulj(qj ) (B.19)
PTj = Re_oT?%j(1 + Ck(M:)l_')

Where

f,l_' = 1.0 if kwall = 0

ft, l_ = f,(Rt_) given by Appendix A ff kwall = 1

Ck =0

. t'Tj (q_) _j
Bj = 2.0 \ #Z-----iak+ # q_b_ T?tr_ (B.20)

In the limit as y _ 0 both the production and dissipation of dissipation terms in the

dissipation equation become computationally ill defined, as their denominators will go

to 0. This necessitates the employment of two new variables, fzbyqsql _ and i.tTbyqsql_,

whose limit may be separately defined at Yl = 0. Therefore

f2 yqsqlj- : (if j > 1 or kwaU = 0) (B.21)
(¢.)_

f2byqsqt7 C /P2TpRe_°= ,3_/_ (ifj = 1 and kwaU = 1) (B.22)

b _ #_J (if j > 1 or kwall = 0) (B.23)
I-tT yqsqlj - (q2) 2

I.tTbyqsql_ = 0 (ifj = 1 and kwall = 1) (B.24)
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Discretized Continuity Equation (Equation 4.13)

+)n n n j--ICont['] = ajp.T; [u'] +
_T? j--1

° . im. i _+ _i} +

°-_-°-_-- T__I}=
Pe "Le _T__I j-1 /

Discretized Momentum Equation (Equation 4.14)

0 (B.25)

Momt[_

= 0

PeT_1 n-lmn-1 n n n n-1 n-1_ 32("-+p_ ,_ )_j(uj+uj__+uj +uj__)

(1 1 1 1 ) (u']-t-u" ,_-I .-1X "_- T;----_ "_- T_ "_- _/ j-1 - uj - uj_ 1 )

+ + )Ay_ .,.+ + +

n n--1 n--1 n n n--1 hn-1 ))< (V 7 -[- Uj_ 1 Jr- Vj "iF vj_I)(hi + hj_ I nl- hj + j-1

_xg(_. + _.-i)

I [(p + #T)hl_ + (p + pT)hl__ 1 _ (p + #T)hi__1 _ (p + pT)h[__l]
Redo

(B.26)

where

8" = _Pc" - p_-I (B.27)
Az"

Discretized Energy Equation (Equation 4.20)

Energyl_
1 , nTn n-1 .-1 n n U" n--1 .-1

= 32M£(7_1)tp_ 0+Pc T; )[_(uj+ j=l+_j +"j l)

× +r;_---_+_-U+ _, _-_- . ___)

AyJ,2 ,V3 n" + Vj_I + Vj"-I n-1 \('_ :__11 a-'_ -_)+ " +:_-1) .,.+vT;+.,;..+
. .-1 n--1× (_' + _j-1 + _j + ¢___)1

1 nT n n-l,'_n-l_+ n n n-1 -+ _(p_ _ + pc _e _qj + qj-_ + qj + q_':l_)

× + r;_--;+ r;---_+_,
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n n n n--1 n--1 n n _ q;--1 n-1× [_j(uj + Uj_l + uj + Uj_l )(q3+ qj_l - qj-i )

n n-1 n n n--1 n-1+ _YJ(v._+ vj_l + _7-1 + vj_l )(b + b-1 + b + b-111
2

- M£(7- +P--_r _12+ +N

_ _'r + N _IS-1- + N _Is-1]

+

X

n n-1 n _n--1_YJ(u_ + us-1 + u_-1 + uj-i )(8 + )
4

Ay s
n n-1[(_,r + _')ls + (_T + _')IL1 + (_'r + _')1;'-1 + (_'r + _')Is-1]

32Redo

n n n-1 n-1)2(h s q- hi_ i + h s + hi- 1

0 (B.28)

Discretlzed Dissipation Equation (Equation 4.16)

Dissip[_
1

_ _ nTn n-iron-1 n n n n--1 n--1
32[P _ _ + p_ ie )aj(u s + us_ 1 + u s -_- uj_ 1 )

(.1 T_-ll _1 , -1 ) n n× + + + ('os+ 'os- -,,,-1 ,,-1-- -- vj -- _vS- 1 )

1 . nTn .._ _n--lmn--l'_ [ n ..1_ n .q_ n--1 .q_ n--1
-_(Pe e Pe "l'e ]AyJ,uj VS_ 1 Vj VS_ 1

+ )

(_ __I _I 1 I, _ _-_ .-i× + T7_-----_ + T__'-------Y + _ (a_J + as_l + as + as_i )

C,l ,ayS
(pTbyqsql') + pTbyqsqr]_l + pTbyqsq]'] -i + pTbyqsql_-__:)

128Re_o

n n ¢n-7-1 n--1 n n n--1 hn-1 ,_2x (%S +%j-i+ .3 +%J-1)(hs +hs-i +hi + S-lJ

-4- --C'2AyJ (f2byqsql'_ "4-fzbyqsql')_l + f2 byqsqljn-1 Jr-f2 byqsqlj_ln-1 )
256

X (t:'vj "_ f'vj-1 "_ vJ -it- "S--l/ + T_. i + + S-1 /

: 0 (B.29)

Discretized Turbulence Kinetic Energy Equation (Equation 4.18)

Tkel' _
1

_ _ nTn rt--1,',',n--l_ nz n n n--1 n--1
64 (Pe e + Pe ie )a s tUj "4- ?l,S_ 1 3k Uj -_ US_ 1 )

(1 1 1 1) n-i__ __ _ (q_ + qj'_-i + q_-l + qs-1)×
n n n--1 n-1

x (qJ + qJ-1 - qj - qs-1 )

1 n n--1 n--1

+ --'i28_p_"T"_+ p2-_T_-x)hyj(v;' + vj-1 + vj + "s-1 )
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1 1 1 ]
n n n--1 .-1 )(b_ + b5_ x + .-1 n-1× (qj + qj-1 + qj + qj-1 n bj + bj_ 1)

1 . n-1 n--I n hn h_-I n-I 2
32Re6oAYJ(P_j + #Tj-1 + PTi + IZTj-1)(hJ + j-1 + + hi-1 )

1 .-1 -- Bn n-1

Re6o(B_ + Bi j-1 - Bj-i )

1 n n n--1 n--1 j n n _n:-I n--1
+ -_(p_T; +p_ T; )Ay (%j+%j_l+ ._ +%j-l)

Ck 2 . (M2t )12-1 + tM_I n , n-1× (l+--_-[(Mi)lj_l+ _ t/j +(Mi)lj-i]

= 0 (B.30)

Discretized Equation for Ou/Oy

Derivu]2 - AYJ(h_ + hi-a) + uj j-1n--Un --0

2

Discretized Equation for Oe./Oy

Derive[_ AyJ n a" en. n
= ----_--(aj Jr j-l) q- v3 -- ev3-1 "_- 0

Diseretized Equation for Oq/Oy

nerivqt" _ _ _ AYJ(b2 + b']_l) + q'_ - qj__l = 0
2

Discretized Equation for OT/Oy

DerivT[_ - AYJ(c_ + c__l) + T_ - T__l = 0
2

(B.31)

(B.32)

(B.33)

(B.34)
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B.5 System of of Discretized Equations

EQNu_.

EQNT_o_u

E Q N Q ,o_n

BCuwall

BCvwall

BCewall

BCqwall

BCTwall

Contl']

Momt[_

ff = Derivul_

Dissipl_

Derivel_

Tkel 

Derivql_

Energyl_

DerivTl_

BCuedge

BCeedge

BCqedge

BCTedge
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B.6 System of Independent Variables

u_u

Q2_tz

u?

v_

hi'

B

q_'

B

uj

Tt

u_ = vj

h_
_rt.

vJ

n

aj

¢2

b_

T2
n

cj

qY,

c j_
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Appendix C

The Jacobian

Enclosed in this Appendix is the form of the Jacobian matrix employed to solve by

Newton's method. The Jacobian is obtained by differenciating the system of equations,

/6, by the independent variables defined by u_ of Appendix C. The Jacobian matrix is

defined by the equation

oF
f- 0_ (c.1)

There are 9 × (jl - 1) algebraic, governing equations being solved in the boundary

layer, plus nine boundary conditions, and three additional equations required when

integrating to only the wall layer. This yields 9 × jl + 3 equations with the same

number of unknowns. However, each of the equations in the boundary layer is only a

function of the independent variables directly adjacent to the grid location in which it

is being approximated. Therefore by formulating T_ and u_ in the manner employed the

resulting Jacobian is a 9 × 9 block tridiagonal matrix of the form seen in Figure C.1.

C.1 Relevant Definitions

In calculating the Jacobian it is convenient to define the derivatives of certain functions

that are employed multiple times.

(c.2)

d#,_an

dT;

O(M2) 2M_qy:
OT? T?2

O(M]) 4M_q_

Oqy T?

(c.3)

(c.4)

(c.5)
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oR_
OT?

OR;
Oq?

q3 4 d n

_ dT7 + PJ + l+Ck(M_)l}' )
n n

n n n 2 2 n- -Re_opeT; %_(#jT_) (t + Ck(Mi)lj)

OlM2"H n \

2 n n _ t/l"

Re_ope T_ qj

T_'ItTe,; _ 1 + Ck(Mt2)17 )

Re_ope T'_ qjOR'_j ,_ . .4

df_----_J= { O if kwall = 0 }dR'_ is caculated from Table in Appendix A if kwall = 1

(c.6)

(c.7)

(c.8)

(c.9)

(c.lo)

×

n n n4

-0-_2 = ,,evj

T_(I+ .(t)lj) 2-e-L:::'_ '_d.rj or; - f?_j 1+ Ck(U2)l_'+ . j or; ]

+

×

Re6oPeTle Cuqj ( ":n d'f_ °R_j )

O#_j _ ,, ,, .4 -._aR_i0% - f?o
0e_j TT(1 + Ck(M2)I_') _-'mevj

(1 + Ck(M t)]_) ( + - ._,j_j k oq']

1 + C_(Mt=)I}'

(c.tl)

(c._)

(c._3)

Omtbyqsq_ Re_op2T_C.

oq? %5_2

n n .T_2A.=::_|
(1 + Ck(Mt_)ly) 2qj f;j + q_ZdR7_ Oq'] ] - "luj_tJ k Oq']

M 2 n1+c.( ,)1_

Diffusion Term in Turblence Kinetic Energy Equation

#Tj tlj t:j

(c._4)

(c._5)

(C.16)
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n n a .n2 _n.cgB'_ 2q) bj Op_rj _3 ca OP_rJ

O,_j ak O,_j akT'_ Oe'_j

rA, I _1, rt n

__ qj PTjCj

Oq_ \ irk _rk Oq'_ crkT?

OBT= 2q;'(i'r"J+ l,_')Ob') \ a_

n -n2 -n

OT_' = 2q'_b] \ OT? -a-_k"+ dT'_ ] + ak T_'2

_Tj_j

Oc'_ akT?

On2 -n

_kT?Oq_

an2 -n

j ,:j Ol_,j

Low Reynolds Number Correction to Dissipation of Solenoidal Dissipation

if kwaU = 0 then

if kwaU = 1 then

1

f2byqsq_- q,_2

Of2byqsq']=_ 2

Oq7 q_

Of2byqsq'_ _ 0
a,_j

Of:byqsq_ _ 0

OT;

cgf2byqsq[

OT_

Of 2byqsq_

1 -- e -C_3V_tj

f2byqsq_ = qr_2

Of2byqsq_ _ 0
Oq'_

Of 2byqsq_ C,3 /De pnTen" n ,_

_/zte6o"S-ff'--n - dT'_ + -2 y evj n n3 n3 n

Oq?

Of_byqsq_

q_
x c., °R___-C,_v_,i

o% q7_
1 c._ _ -c,_

_ OT _ e v ,_
Of 2byqsq_ vm_

OT? qy:

(C.m

(C._S)

(C.19)

(c.20)

(C.21)

(c.22)

(c.23)

(c.24)

(c.2_)

(c.26)

(c.27)

(c.2s)

(c.2o)

(c.3o)

(C.31)

(c.32)
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Notation Employed

Z n n-1 n n--1w : wj + wj + +wj-1 wj_i (c33)

C.2 The Jacobian

The first three rows of the jacobian are associated with the equations for friction velocity,

wall temperature and wall heat transfer that are required when itegrating to only the

wall layer. The next five rows are associated with the boundary conditions at the wall

or in the wall layer. The next 9 x (jl- 1) rows are associated with the governing

equations, while the last four rows are associated with the boundary conditions at the

edge of the boundary layer.

Each term of the Jacobian has an associated row and column denoting its location.

The notation J_ represents the term of the Jacobian in jth row and k th column.

C.2.1 Portion of the Jacobian Associated with the Equations for u_,

T_u and Q_u

• Jacobian for Equation for u_

j2 = (1- kwall) {_1 /, #_,lh_

P_T2 Re6oT_att ]

j6 = (l_kwall)(_l i.p_TenRe,oh,]tz_lT_oa`.________._l

J_ = (1- kw_n) - x _o. o._1 (c.36)
B 7"&Pe Tg Reeol_T10enl

J_ = (1 - kwatt) - • '°_ ,_u 0._1 (C.37)
tl _ npe T'_ Re6ol_T10q_

s:1 = (1 - kwau){ 1 / h_T2o. 0_,_)
_-2 VPnrnRe,o----_l OT_

+ (kwall) - _.u (C.3S)p_T:Re6o,_ET_]
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• Jacobian for Equation for Twau

J_ = 1.0

J_ = (1- kiso)(--PrTu_( 7 -- 1)M£)

jll= (1 - kiso)(-1)

(c.39)

(c.4o)

(c.41)

* Jacobian for Equation for Qwau

j312 -

J2 = Lo (c.42)
n

_wall

Re_oM£( 7 - 1)Pr (C.43)

C.2.2 Portion of the Jacobian Associated with the Boundary Condi-

tions at the Wall or in the Wall Layer

The form of the wall function boundary conditions employed includes modifications for

compressibility.

• Jacobian for Boundary Condition on u

Definitions

(guc _ lln[ne,_o,,n T" / +- +B
(_un _ \ t"wall wall / I_,

OUc __ U_ ( 1 1 dpwaU)
OT_a u '¢ Twau Pwau dTwau

OA1 1/(7 - 1)PrTM£

cTT,_aU - 2 V Tn3wall

Ouc
j1 = _(1 - kwall) cos(A1 uc)

O'II_.

, OA1
10A1 sin(Alu¢)+ 1 cos(u_A1)u¢___W__ ]

A_ OT"_an -_1 _'_ wall/

(C.44)

(c.45)

(C.46)

(C.47)

(C.48)

,14=1.0 (C.49)

• Jacobian for Boundary Condition on v

yl u_ 1 -j1 kvve_ a_. u_ u_"

3-5 = 1.0

(c._0)
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, Jacobian for Boundary Condition on e.

4 (1 kwall) u. T r

J_ = l.O

( 4 p_T_b_
j_o = (k_u) C p_o J

J_l = (1-kwalI)( 3un3 ((2_yl__._)3 T___u( 1 ))')

,/4' _ j /+ (kwall) -2p_T2Re_o

• Jacobian for Boundary Condition on q

J_ = (1 - kw_n) )

(c.)_

j9 = 1.0

j¢1 = (1 - kwall) 2 (C_,)_ T_ T._,.u

• Jacobian for Boundary Condition on T

J_ = kiso+ (1- kiso) (c_ + Prru'_h_(7 - 1)ML) ML d_.,,,,
er-_- 1) dT_ u

j_ = (t - kilo)

j4 = kiso (-uTPrr(7 - 1)ML) + (1 - kiso) \ -_r ]

J_ = (1 - kiso) M_P"_uPrTul
Pr

jll = -kiso

2

Jsx2 = (1 - kiso) M°_P_°au

(c.53)

(C.54)

(C.55)

(C.56)

(c.57)

(c.58)

(c.59)

(c.60)

(c.61)

(c.62)

(c.63)

(c.64)

(c.65)

(c.66)

(c.67)
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C.2.3 Portion of the Jacobian Associated with the Governing Equa-

tions

The following are the terms of the Jacobian that arise from the governing equations.

For these terms 2 <_j <_ jl.

• Jacobian for Continuity Equation

j g(j-1)+4 °t;penT2

9(j-1) - T? (C.68)

j99(j-1)+5 P_T2
(j--l) -- T_' (C.69)

u n. v. n

J:/33.'::; -t-ll _- -ot3penTe n Tjn--_J2 - penTe n
(c.70)

9(j-1) T,2 (C.71)
j-1

_9(j-2)+s p'_T2 (C.72)
9(j-i) - - T_jl

j99(j-2)+ 1 otn _nn.n Ujn--1 Vjn'-I
(5-1) = - jp_,_ _ + p_T:Tn 2 (C.73)

j-1 j-1

• Jacobian for Momentum Equation

j99(J-1)+4 12 ,-1_,-1, , 1<j-1)+1 -- (p_T: + p+ I i )aj _-_

X [U_ ÷ _j-in _ _/,_--1 _ "j-ln-1 ÷ E _/'] (C.74)

j99(j_l)+5 1 . "T" i
(j-1)÷l = 6-4(Pe e +P'_-'T:-I)AYJ_--__-_h (C.75)

j99(J_l)+6 1. ,T,_ ,-1 ,,-1 j 1 1 n
(j-1)+1= _(pe o +po T; )ay __v-R--_o(, j +,_) (C.76)

]9(j--1)+7 10p_j n (C.77)
9g-1)+1 : -R-e_o Oe'_j hj

jg(j-1)+9 1 OpTnJhr," (C.78)
9(j-1)+1 = R_o Oq']

j99(j-1)-1-11 1-. n n-lmn--1, .v-" 1 .
(j-i)+_= -_(poT;+p_ _ )_jL_-_.._(_j+___-

3

3

R_o _,,_T7 + 0T?] _

n-1 n-1
uj - uj__ )
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j9(j-2)+4
9(j-1)-I-1

1 n n n-l.,-,',n-1, n 1
- _2(P°T;+po _ _J _-i

× [u,;+_,_ u,;-_- °-, +E u] (c.80)

']9(j-2)+5 1 n n #n-lTen-1 1

,]9(5-2)+6 6-_ ^n_lTn_l_A..j 1 1= _ n. "{- ]_Tj-1) (C.82)9(j-1)+1 (pnT: + t_¢ _ ) u _ "_ _ v + Re,o ( j-1 "_

']9(j-2)+7 1 0/_J-1 hj__l (C.83)
9(j-1)+1 - Redo 0%'__ 1

']9(j-2)+9 1 0/z_,j_l h" (C.84)
9(j-1)+1 -- Re6o (9qjn_l j-1

(c.85)

• Jacobian for Definition of Ou/Oy

j99(J-1)+4
(j--1)q-2 = 1.0 (C.86)

ayJ (c.sz)j99(J-1)+_
(j-1)+_-- 2

jg(j-2)+49(j-1)+2 = -1.0 (C.88)

_YJ (c.s9)jg(j-2)+6
9(j-1)+2-- 2

• Jacobian for Dissipation Equation

jg(j-1)+4 _2 pen_lTen_l _ 1 ,_ ,_ . n-1 n-19(3"-1)÷3 = (p'_T: + ) _ "_aj(% i + e_,j_l - %j - e,,j_l)

j9(j-1)+5 1 . . .-1 .-1 j 1
9(j-1)+a =-_(PeT; + pe T; )A N _ a _ -_

jo9(j-l)+6 eel ]_T E EvAyJ E h(j__)+_= -2i:8R_ ° _ -_

(c.9o)
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._ _n_lrr_n_l x E u 1 n

12sR ,o v+E /
Ce2 _ 1 " n n _n--1,,'rm--l_

[( 20f:byqsq_ ]× E'o) % +2Ei:b.q qE,o

1 [lO#+-/a;]R_o ,,_ O_j
(c.93)

rg(J-1)+8 AYJ(p+T_ + p_ l+ ) _ v _ T
n n _n--lrrln--1 _ I

_9(j-1)+a- 64 (C.94)

j99(3-1)-{.-9
(j-1)+3

C_x C9#Tbyqsq_ 2

= 128Re,o Oq; Ze_ (Z h) AyJ

C,2- ,_ n _n-l,_,_-t,Ofzbyqsq'_ 2

+ -_(p_T_ + p, ,+ ) Oq; (Eel')

10#_,j a')

Redo Oq_ o',

E

(c.95)

j9(j-1)+ll _
9(j-1)+3

ot n.

3 + nmn _n--lr_n--l_,_ TM n n __ _.n,1 n--1 1

3

n n n--1 n--1

AyJ(P_T_64 +P_ T_ )_-_v_-]a._jn2

C_I 2 O#Tbyqsq'_

128Redo _ e_, (y_ h) AyJ OT_

Ce2" nTn _n--lrcln--l_ 2

( O'2byqsq_ )× - E f2byqsq_l-_ + OT; E 1 Ay5

J99(j-2)+4 3_ n_lmn_l,_--_ 1 ,_" n n _ eaT-1 n--1(j_,)+3 = (p_T:_+p_ _ )2.,_j(%+_.j_, ._ -%-,)

j99(j-2)+5 1

j99(j-2)+6 Cel P.T

(j-1)+a = -2128Re-------_ E _- E e,_AyJ E h

(c.96)

(C.97)

(C.gs)

(C.99)

_99(j-2)+ 7
(j-1)+3

1 n-lr_n-1
32(P_T:+P_ lg )EuE 1 n
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j99(J-2)+8
(j-1)+3-

,fg(j-2)+9
9(j-1)+3

+

X

C_2 g-_ 1 " ,, ,_ _,_-1,,,,-1_

0_vnj_l

1 [ t au:_j_____l_..]
(C.100)

128Re_o Oq_"_1

+ -_(PeT; + Pe _e ) Oq']-i __ _Aya

1 O#_,j_ 1 aj"__1

+ Redo Oqjn_l a, (C.102)

+

a.T zn. nTn -n--lt'nn--l _ _ TM n n n--1 n--1 1

-_tPo _ + p_ _o )2..,"(%J +%_-1 - %j - %j-ll-TS_ --1

n n _n--l,_n--I _ i

64 j-1

C_, _ O#Tbyqsq'/__

Ce2 - n n _n--lmn-l_ , (E o)
Of2byqsq'__ 1

(-Ef2byqsq_ + OT__ 1 El) Ayj

Redo [ _, OT'__1 o'_ + dT?__ ] _-_ J
(cao3)

Jacobian for Definition of Oe,_/Oy

j99(J-_)+_
(j-_)+4 = 1.0 (C.I04)

j99(j_l)+8 _ AyJ
(j-1)+4 2

]9(j-2)+v
9(j-_)+4 =-1.0

jvg(j__)+s _ Ay_
(j-_)+4 2

(c._o5)

(c.ao_)

(C.lO7)



, Jacobk_ forTt_bulenceKineticEnergy Equation ,,-i (C.I08)

m(J-_)+_' = _tp_*_ 7 ,._ (c.109)
"°_J-'_+° ,:-,T:-')_¢E TE qEbi , ,,T _

9U_x)+_ = - 16Re6o

• 1 C_, (_)')

1_..____----
- Reeo Od_i 32R, eeo
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j99(j-2)+5 I . n n _n--lnnn--1 I

j99(/-2)+6 1
(j-1)+_ - 16Re,_oAyJ E I_T E h

(C.117)

(c.11s)

1 n_ln_ljl(C k )- 16(P_'T_+P_ T; )Ay _ l+-_(Mt 2)

1 oB?_I I

1 . ,,,, n-l,'r,n-l_ n

I ,, . q?__ q,,__)× _(F_,q+qj +qj-_- + j-_

1 2 1 OB'__ 13_._o_._(E h) 0.__1+
Oq)"_1 Reso Oq'__1

n-1 n-1 j 1 Ck 0(Mt2)l?_l+ (p'CT:+ po T; ),ay _ _ _ _ 4 OqL1

1 , .T n ,_-1 n-1 j 1 _b (C.120)

j99(J-_.)+1o_ 1 n n n-1 n-1 j 1 1 OBr__l
(C.121)

j9(j-2)+11
9(j-1)+5

1 . n n n--l,',',n--l_n

n n-1 i

× (q?+qJ-_-qT-' +qJ-')T?J,

1 , nT . n--1 n--1 j 1128 (p_ _ + pC T" )Ay _v_q_b. -
.,j=1

1 . n n n--1 n--1 j

+ -fg(p_T;+ p_ T; )aU _,

1 C_, 10(M?)IL1× T??_I-I-"¥'ET,_ OT__ 1

132R_o_._(E _)"o,,___or;_l+

19(j-2)-I-12 1 OB'__ 1

9(j--i)+5-- Redo Ocjn _

• Jacobian for Definition of Oq/Oy

10Br__a

Re$o OT?_ 1 (C.122)

(C.123)

J9 (j-I)÷9 1.0
(j-1)+6 = (C.124)

j99(j-1)+ 0 _ Ay "/
(j-_)+6 2 (c.125)
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jgU-2)+9 = -I.0
9(j-_)+6

19(J-2)+1o_ _ AY..__j
9(j-1)+6 - 2

, Jacobia_ for Energy Equation

jg(j-1)+a (p'_T:-t'P'_-'T: -1) ct';_ (T'_+TJ -1-T'_-l-T_'-l'_'_
9(j__)+7 = ---/2M£(_ - 1) n--1

r* n n--1 n--1 _- nt n n n--1 -- qj--1)
T: ) + qj-1

64 (c.12s)

+ -_--t_+

p_T:+ p_-_T:-*)A,,j I
- 64M£(')' - 1)

n n n--1 n--I(p_-T_+ _-_T_-_)_q_ iA¢ _:b
+ 128 T

j9(j-1)+6__ A_ yj (_T+_)_h
9(.i-I)+7- 16Re_o

= -M£(___)_----_p_ o_ ]

- 32Redo

(c._3o)

jg(j-1)+9
9(j-I)+7

n-i

+ "-_-,__

- _._:2_..W:-___ - 32Redo qj- M_Re_o l Prt Oqj ] 0 "

"- = _ 128 "--"
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(c._34)

(^.T,_ . ^n-ITS-IX . 1
Pe e T lae e J /_yJ E ?.) E -_

- 64M2(7- 1)

- Re_oM_('Y- I) \_ + Pr]

(c.135)

n T n-1 )n n -n -lrpn-l_ ]" n _ T'_ -1

= mM£(_- _)
_n--l_n-I 1 nt n n

(p_[[r +Pe "e )EqE-_aj(qi +qi_l-q_]-l-q']-_)
+ 64

(C.136)
+ _e__:(_- + 3,,-1)

a_

_n--1 a',n-1 _, i

- 64M_(_-_)
n n ^n-lq_n-l\ I J E b

+ 128
(C.137)

j o(___)+__ _ AU_ (]_ _T + ]_ z)_ h
(.i-_)+7 - 16Redo

(C.13S)

1 [ ___OUT_-,

= _M£(_-_)_o Y_, OA-,

32/_e_o 0%__1
(C.139)

jo(.i-_)+o =
9(i-i)+_

n n pen-IT,-l) 1 _ n n-1 n-_
(p_T: + _ T (_--" u(qi + qi-_ - qi - qi-_ )

64

2

[Prt Oqi_x ] -___-W:g-"-

jo(5-2)+io:
9(j-i)+7 128

(ca4o)

(C.141)

n n _n--l,r,n-l_

o(i-1)+7 : 32M_(9' - 1) _T,_lTr__l ) _]
I_ ,_ (__1 T_ + T]_-_ - _-_ AYiT_ _ -

X UC_j _ j-1 -
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n n _n--lr_n-I \

64 T n2
j-1

1 ( 1 0#_i_t 1 dPj__l) n- Re_oM£( 7 - 1) Prt OT_'_1 + PrdT'__ i cj-1

- 32M_(-7--1)Re,o _, _ + dT;_l] (Eh)2

n n n-1 n-1(peT_ + pe T_ 1
= -ff-4"M_---_ ) Ay'i _ v _ -_

- Re6oMi(_- 1) vr_ + _1

• Jacobian for Definition of OT/Oy

(C.142)

(C.143)

j9(j-1)+ll
9(j-I)+8 = 1.0 (C.144)

j9(j-1)+12 AY j (C.145)
9U-i)+s - 2

J99(j-2)+11
(j--l)+8 ------1.0 (C.146)

J99(j-2)+12 AYJ (C.147)
U-I)+8 - 2

C.2.4 Portion of the Jacobian Associated with the Boundary Condi-

tions at the Edge of the Computational Domain

• Jacobian for Boundary Condition on u

j99 f1-8
fl = 1.o (c.148)

• Jacobian for Boundary Condition on e

j99fl-5
fl+l = 1.0- kgrad

j99j1-4
fl+l = kgrad

• Jacobian for Boundary Condition on q

j99J I-3
jr+2 = 1.0 - kgrad

j99Jl- 2
fl+2 : kgrad

(C.149)

(c.150)

(C.151)

(C.i52)
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• Jacobian for Boundary Condition on T

_99jI- 1
jl+2 = 1.0 (C.153)

Where kgrad = 0 indicates a dirichlet boundary condition and kgrad = 1 indicates a

Neumann boundary condition for q and e..
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where

f_

A i =

B i =

Aj Bj Cj

Ajl-1 Bjl-1 Cjz-1

_l cjz

a_ al2 a 3 a 4 a_ a 6 al7 a s a 9

a_ a22 a23 a 4 a5 a26 a27 a2s a 9

a3x a32 a_ a_ a S a6 a37 a_ a9

a41 a42 a4a a4 a45 a46 a47 a s a9

a_ a_2 a53 a4 a_ a 6 a_ a5s a 9

a1 a62 a63 a64 a65 a66 a67 a6s a 9

a_, a_ a_, a_ a_, a6 a 7 a_ a 9

a_ as2 as3 a 4 a_ a6 as7 a_ a9

a91 a92 a93 a 4 a95 a 6 a97 a9s a9

b_ b_ b_ b_ b_ b_ b_ b_ b_

b_ b_ b_ b_ b_ b_ b_ b_ b_
b_ b_ b_ b_ b_ b_ b_ b_ b_

b_ t,_ _,_ _,_ _,_ b_ _,_ _,_ _,_

Figure C.I: Form of the Resulting Jacobian
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Appendix D

Convergence Criteritia

D.1 Convergence Criteria

The convergence criteria for Newton's method employed is to test if the average of the

absolute value of the relative change of each of the independent variables is less than

some specified tolerance. If this tolerance is met for each of the independent variables,

then convergence is assumed and the iterating at that spatial location stops. Table D.1

gives the tolerances typically employed. The algorithm used to test for convergence

Variable Lowest Value for Test Tolerance

Utau 1 x 10 -6 1 x 10 -5

Twall

QwaU

U

h

1 × 10 -s

1 x 10 -s

1 x 10 -6

1 × 10 -6

10-6

1 × 10 -5

1 x 10 -5

1 x 10 -5

1 x 10 -5

x 10 -5ix 1

cv 1 X 10 -9 1 X 10 -6

a 1 X 10 -9 1 X 10 -6

10-9 × 10-6q I× I

b 1 x 10-9 1 x 10-6

T 1 x 10-6 1 × 10-5

1 x 10 -6 1 x I0-5

Table D.I: Tolerances Employed in Iterating by Newton's Method

of the solution at each iteration works by summing the absolute value of the relative

change of each indepedent variable at each grid location. The sum of the relative change

at iteration i is defined by equation D.1

K/= _ (D.1)
j=1 _i
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The relative change at each grid location is only added if the absolute value of the

variable at that grid location is above sum specified "Test" value. This is to prevent

the code from computing the relative change when the value of the independent variable

is zero. For cases in which the heat transfer at the wall is adiabatic the code tests for

only the absolute value of the change in Qwau and compares this value to the tolerance.

Once the sum of the relative changes of each of the independent variables is known, an

average value is found by dividing the sum of each independent variable by the number

of grid locations in which the calculation of the relative change is made. This yields

the average relative change of each of the indpendent variables. When this value is less

than the tolerance the solution is said to be converged. A decrease in the tolerances

by a factor of ten is seen to have a very minimal effect on the solution, such that the

solution obtained by the specified tolerances in Table D.1 may be assumed to be the

converged solution.

In a typical calculation it is the variables a,b,c and h which take the highest number

of iterations to converge. These variables correspond to the derivatives with respect to

y of e,, q, T and u. A typical converged solution results in the tolerance of the primary

variables u,v,e,,,q and T being of the order 10 -s for the criteria given in Table D.1.
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Favre Averaged vs.

Appendix E

Conventional Averaged Reynolds

Shear Stress

In compressible flow fields the Reynolds shear stress is given by

vt_,,.b = --pu'v" (E.1)Y

where u" and v" are the mass averaged fluctuations in the velocity as described in Chap-

ter 2, p is the instantaneous density and-signifies Reynolds averaging. In conventional

Reynolds averaged notation the compressible Reynolds shear stress is given by

"_v = - #Su-_v_+ (E.2)

where u I, v t, and pl are the fluctuating components of the instantaneous velocity and

density, such that u' = 0.

Equations E.1 and E.2 are equivalent. However, in the experimental measurement

of compressible flow fields it is the fluctuating mass flux, 'p ul, which is measured with

either single or crossed wire anemomenters [11]. Using these measurements and the

"strong Reynolds analogy" the parameter fluky _ may be calculated. This is the ex-

perimental shear stress given by Fernando et al for the calculation of a supersonic,

turbulent boundary layer in an adverse pressure gradient [10], [11], [43] which is com-

pared to the present model. It may be shown that the shear stress given by Fernando

et al is fundamentally equivalent to the shear stress calculated by the present model.

The Fernando et al experimental data is for a Moo = 2.92 adiabatic boundary

layer experiencing a mild pressure gradient. Since the flow is adiabatic the stagnation

temperature may be assumed to be constant throughout the boundary layer. The

data of Fernando shows this to be true across the boundary layer within 4% with the



120

experimental uncertainty being ±1%. The definition of total temperature is given by

To - T + 21--_--(u2 + v 2 + w 2) (E.3)Cp

where To is the dimensional stagnation temperature, T is the dimensional static tem-

perature, Cp is the coefficient of specific heat at constant pressure and u,v,and w are the

dimensional, instaneous, local components of the velocity. Using Reynolds averaging,

equation E.3 may be rewritten in the form

- , 1 I ulu I VtV!
TO ÷ TO = 7' + T' ÷ -_p(fifi + 2flu + + _ + 2_v' + + ,_ ÷ 2_w'÷ w'w') (E.4)

In a two dimensional boundary layer ,_ = 0, fi >> _, and, except for very close to

the wall, u' _ vp. If the stagnation temperature is constant then its time fluctuating

component must be equal to 0, and the stagnation temperature must be independent

of the turbulent (time dependent) variables. Since the fluctuating component of the

velocity is typically at least an order of magnitude less than the the mean component the

second order turbulent parameters are signifigantly less than the first order parameters.

The data of Fernando et al shows u'/fi < .15. Therefore, grouping first order turbulent

terms and using the above approximations for the relative contribution yields

1 !
T' _ ---_u (E.5)c,

According to Bradshaw [1] in a non-hypersonic boundary layer (Me < 5.0) Morkovin's

hypothesis shows that the acoustic mode of turbulence is negligible

p'/p << 1 (E.6)

Therefore from the equation of state

p = pRT (E.7)

p + p' = (f ÷ p')R(T ÷ T') (E.8)

and similar arguements as proposed above for the stagnation temperature it may be

shown that

T I
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The purpose of arguing equations E.5 and E.9 is to show that the triple density

velocity correlation of the conventional Reynolds averaged shear stress is signifigantly

less than mean density, double velocity correlation. Using the approximations given by

equations E.5 and E.9 and the fact that u _ ,,_ v_ it may be assumed that

pu--
U/3

P/U/V/ "_ CpT
(E.10)

and

The ratio of equation E.10 to E.11 is

#u'v' ,_ flu '2 (E.11)

p/U/V /

pu,v_ _ (7 - 1)M2V _-_- (E.12)

where M is the local Mach number. According to the experimental data of Fernando

et al the quantity (7 - 1)zvl V _- is less than 0.1 everywhere.

Similar arguments may be used for comparing the third and second terms of equation

E.2. The second term may be approximated by equation E.10, and the third term may

be approximated by

(p'u')(p'v')

The ratio of equation E.10 to E.13 is

_ 2

\ )

p/U/_ I
(E.14)

Therefore the third term of equation E.2 is less than 10% of the second term and less

than 1% of the first term.

According to Fernando et al [10] there is a very signifigant, -5% to +30%, uncer-

tainty associated with measuring the kinemtaic Reynolds shear stress, u'v'. Therefore

the maximum uncertainty of 10% introduced in ignoring the additional contribution to

the Reynolds shear stress by the triple velocity correlation falls within the experimental

uncertainty and is justified.
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Appendix F

Low Reynolds Number k- e Two Equation Compressible

Turbulence Code

A copy of the utilized k - e code and tabulated function f_, may be obtained from

Professor Doyle D. Knight at

Address:

Professor Doyle D. Knight

Rutgers University

Department of Mechanical and Aerospace Eningeering

P.O. Box 909

Piscataway, NJ 08855-0909

Phone Number:

(908) 445-4464

email address:

knight @jove.rutgers .edu
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